Fall 2024 MATH33A Worksheet 3: Sections 2.3, 2.4, 3.1

Exercise 1. Let
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$$
.

- (a) Compute A^{-1} .
- (b) Use the inverse to find all solutions to $A\vec{x} = \begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix}$, and all solutions to $A\vec{x} = \begin{bmatrix} 0\\ 2\\ 1 \end{bmatrix}$.

(a)
$$A^{-1} = \begin{bmatrix} 2 & -2 & 3 \\ -3 & 4 & -6 \\ 1 & -1 & 2 \end{bmatrix}$$
.
(b) $A\vec{x} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$ implies $\vec{x} = A^{-1} \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$,
 $\vec{x} = \begin{bmatrix} 2 & -2 & 3 \\ -3 & 4 & -6 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 15 \\ -29 \\ 9 \end{bmatrix}$
 $\begin{bmatrix} 15 \end{bmatrix}$

Thus the only solution is $\vec{x} = \begin{bmatrix} 10 \\ -29 \\ 9 \end{bmatrix}$. Similarly for the second equation, we find that

$$\vec{x} = \begin{bmatrix} 2 & -2 & 3 \\ -3 & 4 & -6 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$$

is the only solution.

Exercise 2. Show that the following subsets are *not* subspaces of \mathbb{R}^2 :

(a) $V = \left\{ \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix} \right\}$ (b) $V = \left\{ \begin{bmatrix} 3s+1\\2-s \end{bmatrix} \mid s \in \mathbb{R} \right\}$

Show that the following subsets *are* subspaces of \mathbb{R}^2 :

(c) $V = \left\{ \begin{bmatrix} t \\ 3s \end{bmatrix} \mid s, t \in \mathbb{R} \right\}.$ (d) $V = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$

To show a subset is not a subspace, we need to find $u, v \in V$ such that $u + v \notin V$ (i.e., V is not closed under addition), or some $u \in V$ and a scalar $c \in \mathbb{R}$ such that $c\dot{u} \notin V$ (i.e., V is not closed under scalar multiplication).

- (a) Let $u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, which are both in V. Then $u + v = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ is not an element of V, so V is not a subspace.
- (b) Let $u = \begin{bmatrix} 3+1\\ 2-1 \end{bmatrix} = \begin{bmatrix} 4\\ 1 \end{bmatrix}, v = \begin{bmatrix} 7\\ 0 \end{bmatrix} \in V$, so $u + v = \begin{bmatrix} 11\\ 1 \end{bmatrix}$. Let us show that u + v is not in V, so there does not exist $s \in \mathbb{R}$ such that $\begin{bmatrix} 3s+1\\ 2-s \end{bmatrix} = \begin{bmatrix} 11\\ 1 \end{bmatrix}$. In other words, we aim to show that there are no solutions to the linear system

$$\begin{bmatrix} 3\\-1 \end{bmatrix} \begin{bmatrix} s \end{bmatrix} = \begin{bmatrix} 10\\-1 \end{bmatrix}$$

Thus performing augmented row reduction, we have

$$\begin{pmatrix} 3 & | 10 \\ -1 & | -1 \end{pmatrix} \Rightarrow^{\text{swap and multiply by } -1} \begin{pmatrix} 1 & | 1 \\ 3 & | 10 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & | 1 \\ 0 & | 7 \end{pmatrix}$$

Thus, there are no solutions to $\begin{bmatrix} 3 \\ -1 \end{bmatrix} \begin{bmatrix} s \end{bmatrix} = \begin{bmatrix} 10 \\ -1 \end{bmatrix}$, so $\begin{bmatrix} 11 \\ 1 \end{bmatrix}$ is not in V, so V is not a subspace.

To show subsets are subspaces of \mathbb{R}^2 , we have to show that for all $u, v \in V$ that u + v is in V (V is closed under addition), and that for all $v \in V, c \in \mathbb{R}$, that $c \cdot v \in V$ (V is closed under scalar multiplication).

(c) Let u, v be two elements of V, so $u = \begin{bmatrix} t_1 \\ 3s_1 \end{bmatrix}$ for some $t_1, s_1 \in \mathbb{R}$ and $v = \begin{bmatrix} t_2 \\ 3s_2 \end{bmatrix}$ for some $t_2, s_2 \in \mathbb{R}$. Then, $u + v = \begin{bmatrix} t_1 + t_2 \\ 3s_1 + 3s_2 \end{bmatrix}$. In particular, $u + v = \begin{bmatrix} t \\ 3s \end{bmatrix}$ for $t = t_1 + t_2, s = s_1 + s_2$, so $u + v \in V$. Now let u be an element of V, so $u = \begin{bmatrix} t_1 \\ 3s_1 \end{bmatrix}$ for some $t_1, s_1 \in \mathbb{R}$, and let $c \in \mathbb{R}$ be arbitrary. Then $c \cdot u = \begin{bmatrix} ct_1 \\ 3cs_1 \end{bmatrix} = \begin{bmatrix} t \\ 3s \end{bmatrix}$ for $t = ct_1, s = 3s_1$, so $c \cdot u \in V$. (d) Let u, v be two elements of V. Since V only has a single vector, we must have $u = v = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Then $u+v = \begin{bmatrix} 0\\ 0 \end{bmatrix} \in V$, so V is closed under addition. Now let $u \in V$, so $u = \begin{bmatrix} 0\\ 0 \end{bmatrix}$, and let $c \in \mathbb{R}$ arbitrary. Then $c \cdot u = \begin{bmatrix} c \cdot 0 \\ c \cdot 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in V$, so V is closed under scalar multiplication.

Exercise 3. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation of projection onto the line y = x. Is T invertible? Argue both (1) geometrically, and (2) algebraically by finding the matrix representation for Tand computing its determinant

Geometrically: Since T is projection onto the line y = x, for every point (a, b) on the line y = -xperpendicular to y = x, $T\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Therefore, T cannot have an inverse since it is not one-to-one/injective.

Algebraically: Since T is projection onto y = x, for every point (a, b) on the line y = x, $T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$. Similarly for every point (a, b) on the line y = -x perpendicular to y = x, $T\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Therefore, $T\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$ and $T\begin{bmatrix}-1\\1\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}$. Using linearity of T, we have: $T\begin{bmatrix}1\\0\end{bmatrix} = T\left(\frac{1}{2}\begin{bmatrix}1\\1\end{bmatrix} - \frac{1}{2}\begin{bmatrix}-1\\1\end{bmatrix}\right) = \frac{1}{2}T\begin{bmatrix}1\\1\end{bmatrix} - \frac{1}{2}T\begin{bmatrix}-1\\1\end{bmatrix} = \begin{bmatrix}1/2\\1/2\end{bmatrix}$

Similarly,

$$T\begin{bmatrix}0\\1\end{bmatrix} = T\left(\frac{1}{2}\begin{bmatrix}1\\1\end{bmatrix} + \frac{1}{2}\begin{bmatrix}-1\\1\end{bmatrix}\right) = \frac{1}{2}T\begin{bmatrix}1\\1\end{bmatrix} + \frac{1}{2}T\begin{bmatrix}-1\\1\end{bmatrix} = \begin{bmatrix}1/2\\1/2\end{bmatrix}$$

Therefore, T is represented by the matrix $A = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$. Since det A = 0, T is not invertible.

Exercise 4. Let A be an $m \times n$ matrix, and let B be an invertible $n \times n$ matrix.

- (a) Suppose that for all $\vec{b} \in \mathbb{R}^m$, $Ax = \vec{b}$ has a solution. What does this tell you about the image of A?
- (b) How many solutions are there to $Bx = \vec{b}$ for any $\vec{b} \in \mathbb{R}^n$?
- (c) What is the image of B (hint: does $Bx = \vec{b}$ always have a solution?)
- (d) (Challenge) If B is invertible, what is Im(AB) in terms of the images of B, A? If C is an invertible $m \times m$ matrix, can you answer the same question for Im(CA)?

- (a) Let $\vec{b} \in \mathbb{R}^m$ be any vector. Since $Ax = \vec{b}$ has a solution, \vec{b} is in the image of A. Therefore, ImA is all of \mathbb{R}^m since it contains every element of \mathbb{R}^m .
- (b) There is *exactly one* solution since B is invertible, given by $x = B^{-1}\vec{b}$.
- (c) By part (a), (b), $\text{Im}B = \mathbb{R}^n$.
- (d) $\operatorname{Im}(AB)$ is the set of all the vectors in \mathbb{R}^m of the form ABx for $x \in \mathbb{R}^n$. $\operatorname{Im}(A)$ is the set of all the vectors in \mathbb{R}^m of the form Ay for $y \in \mathbb{R}^n$. Therefore, every element of $\operatorname{Im}(AB)$ is also an element of $\operatorname{Im}(A)$ since ABx = Ay for $y = Bx \in \mathbb{R}^m$, i.e., $\operatorname{Im}(AB)$ is a subset of $\operatorname{Im}(A)$. Now take any element Ay of $\operatorname{Im}(A)$. Since B is invertible, there is a solution x to Bx = y. Thus, Ay = ABx, so $Ay \in \operatorname{Im}(AB)$. Therefore, $\operatorname{Im}(A)$ is a subset of $\operatorname{Im}(AB)$, so since both sets are subsets of the other they are equal: $\operatorname{Im}(A) = \operatorname{Im}(AB)$.

There is no characterization of $\operatorname{Im}(CA)$ in terms of $\operatorname{Im}(A)$. For instance, let $A = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$. Then if $C = \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix}$, then $\operatorname{Im}(CA) = \operatorname{Im}(A)$ is the span of $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$. But if $C = \begin{bmatrix} 0 & -1 & 0\\1 & 0 & 0\\0 & 0 & 1 \end{bmatrix}$ (which is invertible), then $\operatorname{Im}(CA)$ is the span of $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, so the image depends on the choice of C.

Exercise 5. Find the inverse of the following matrix

$$A = \begin{bmatrix} 1 & c & c^3 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

in terms of $c \in \mathbb{R}$. Verify your answer with matrix multiplication.

$$A^{-1} = \begin{bmatrix} 1 & -c & c^2 - c^3 \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$$