Fall 2024 MATH33A Worksheet 3: Sections 2.3, 2.4

Exercise 1. Let
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$$
.

- (a) Compute A^{-1} .
- (b) Use the inverse to find all solutions to $A\vec{x} = \begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix}$, and all solutions to $A\vec{x} = \begin{bmatrix} 0\\ 2\\ 1 \end{bmatrix}$.

Exercise 2. Show that the following subsets are *not* subspaces of \mathbb{R}^2 :

(a)
$$V = \left\{ \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix} \right\}$$

(b) $V = \left\{ \begin{bmatrix} 3s+1\\2-s \end{bmatrix} \mid s \in \mathbb{R} \right\}$

Show that the following subsets *are* subspaces of \mathbb{R}^2 :

(c) $V = \left\{ \begin{bmatrix} t \\ 3s \end{bmatrix} \mid s, t \in \mathbb{R} \right\}.$ (d) $V = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ **Exercise 3.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation of projection onto the line y = x. Is T invertible? Argue both (1) geometrically, and (2) algebraically by finding the matrix representation for T and computing its determinant.

Exercise 4. Let A be an $m \times n$ matrix, and let B be an **invertible** $n \times n$ matrix.

- (a) Suppose that for all $\vec{b} \in \mathbb{R}^m$, $Ax = \vec{b}$ has a solution. What does this tell you about the image of A?
- (b) How many solutions are there to $Bx = \vec{b}$ for any $\vec{b} \in \mathbb{R}^n$?
- (c) What is the image of B (hint: does $Bx = \vec{b}$ always have a solution?)
- (d) (Challenge) If B is invertible, what is Im(AB) in terms of the images of B, A? If C is an invertible $m \times m$ matrix, can you answer the same question for Im(CA)?

Exercise 5. Find the inverse of the following matrix

	[1	c	c^{3}
A =	0	1	c
	0	0	1

in terms of $c \in \mathbb{R}$. Verify your answer with matrix multiplication.