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The topic of this paper is unitary representations of real Lie groups. When a group G
is compact, we will see that in some sense we know everything we need to know about G
from its ordinary (i.e. not a priori unitary) finite-dimensional representations. Moreover,
unitary representations of compact groups will have some of the nice decompositions and
character theory that we obtained from representations of finite groups. To illustrate the
differences between unitary representation theory and the ordinary finite-dimensional
representation theory, as well as the differences between the case of a compact group
and a noncompact group, I will primarily consider two groups which have “the same”
finite-dimensional complex representations: SU(2) and SL2(R). (Note that I intend to
produce a lot of the nice results for the compact case in detail, as we were only able to
briefly touch on it at the end of Serganova’s 261A class).

§1 Preliminaries

§1.1 Unitary Representations

Definition 1.1. For a Hilbert space H, the group U(H) of unitary operators on H
is comprised of bounded operators U on H such that 〈Uv,Uw〉 = 〈v, w〉. A (strongly
continuous) unitary representation of a Lie group G on Hilbert space H is a group
homomorphism ρ : G → U(H) such that g 7→ ρ(g)ξ is continuous for all ξ ∈ H. For
morphisms between unitary representations f : (H1, ρ1)→ (H2, ρ2), we generally want
to consider bounded intertwining operators: maps f ∈ B(H1, H2) such that

H1 H2

H1 H2

f

ρ1 ρ2

f

Two representations are unitarily equivalent if there is a unitary (i.e. 〈Ux,Uy〉2 =
〈x, y〉1) intertwining map between them. A representation is irreducible if its only
closed G-invariant subspaces are 0 and V .

Note: By convention, Hilbert space inner products will be conjugate-linear in the first
argument and linear in the second.

In the ordinary finite-dimensional case, if a Lie group G is not semisimple, in general
we have no guarantee that its representations are, so classifying its indecomposable
representations can be harder than knowing the irreducible ones. However, for finite-
dimensional unitary representations we always have semisimplicity:
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Theorem 1.2 (Complete Reducibility of Finite-Dimensional Unitary Representations)

For any Lie group G, any nonzero finite-dimensional unitary representation (H, ρ)
of G decomposes as a direct sum of irreducible representations of G.

Proof. Suppose H0 is a closed G-invariant subspace of H. Let H1 = H⊥0 , i.e.

H1 = {ζ ∈ H : 〈ζ, ξ〉 = 0∀ξ ∈ H0}

Now, H1 is G-invariant because 〈gζ, ξ〉 = 〈ζ, g−1ξ〉 = 〈ζ, ξ′〉 = 0. Furthermore, H1 is
closed as the intersection of closed sets⋂

ξ∈H0

{f−1
ξ (0) : fξ(ζ) = 〈ζ, ξ〉}

Thus, H = H0 ⊕H1, a direct sum of closed subrepresentations. For all finite-dimensional
H, this gives that H is a direct sum of irreducibles by induction.

In the greatest generality, the same is not necessarily true in infinite dimensions, and so
the best that is possible is a “direct integral” decomposition (see e.g. [Deitmar] for a
more detailed discussion of singular integrals). However, we can decompose the Hilbert
space of a unitary representation into subspaces with “cyclic vectors” — a subspace V
has a cyclic vector ξ if the closure of the span of {π(g)ξ : g ∈ G} is V — as is often
the case in functional analysis for single operators. Assuming the axiom of choice, this
can be shown via Zorn’s Lemma: the collection of pairwise orthogonal cyclic subspaces
satisfies the chain condition (the union of an ascending chain will still consist of pairwise
orthogonal cyclic subspaces) and so there is some maximal collection C. Then,

H =
⊕

(ξ,Vξ)∈C

Vξ

because as in the above theorem we can find an element ξ′ of the orthogonal complement
of this direct sum, whose cyclically-generated subspace must then be orthogonal (because
the orthogonal complement is closed) to our previous subspaces, giving a contradiction.

§1.2 Background Results

Before proceeding, I’ll collect here some background results which I will need later. The
omitted proofs for results in functional analysis and integration theory can be found
in [Lang: Real]. For the proof of Schur’s Lemma I will follow the outline given in
[Folland].

Theorem 1.3 (Spectral Theorem for Compact Self-Adjoint Operators)

If T is a compact self-adjoint operator on Hilbert space H, then there exists an
orthonormal eigenbasis {ei} of H with real eigenvalues λi ∈ R.

Theorem 1.4 (Haar Measure)

There exists a left-invariant Borel measure µ on any locally-compact group G. If G
is compact or semisimple then µ is also left-invariant.
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Lemma 1.5 (Schur’s Lemma)

Let (H1, ρ1), (H2, ρ2) be two irreducible unitary representations ofG and T a bounded
intertwining operator. Then T = 0 or a scalar multiple of one fixed intertwiner (the
identity for H1 = H2).

Proof. Suppose T : H1 → H2 is a nonzero bounded intertwining operator. Then, T ∗ is
bounded and so we have

T ∗ρ2(g) = T ∗ρ2(g−1)∗ = (ρ2(g−1)T )∗ = (Tρ1(g−1))∗ = ρ1(g)T

using the fact that

〈ρi(g)x, y〉i = 〈ρi(g−1)ρi(g)x, ρi(g
−1)y〉i = 〈x, ρi(g−1)y〉i =⇒ ρi(g)∗ = ρi(g

−1)

This means that T ∗ is a bounded intertwining operator, and so T ∗T is a bounded
intertwining operator on H1, and similarly for TT ∗ on H2. So, let S be a bounded
intertwiner on Hi. By the same argument as for T , S∗ is a bounded intertwiner, and so
Re(S) = 1

2(S + S∗) and Im(S) = 1
2i(S − S

∗) are self-adjoint intertwiners. Note that if
both were multiples of the identity we’d have

Re(S) = λ1I Im(S) = λ2I =⇒ S = λ1I + iλ2I = λ3I

And in fact both are multiples of the identity for operator theoretic reasons: if a set
of operators (here, {ρ(g)}) commutes with a self-adjoint operator (here, the real and
imaginary parts of S), then it commutes with the functional calculus of any bounded
function on the spectrum of the operator. So, if one of the operators, say Re(S) were not
a multiple of the identity, it has some nontrivial spectral projection which commutes with
G. Finally, this would contradict irreducibility because for any projection P commuting
with G, its range (which is not all of Hi) is closed and G-invariant:

y = Px =⇒ gy = gPx = P (gx)

Now, using that nonzero bounded intertwiners on a single space are multiples of the
identity, that means TT ∗ = T ∗T = λI, i.e. 1√

λ
T is unitary, so T is a unitary equivalence.

For two unitary equivalences, T1, T2, T ∗1 T2 is a bounded intertwiner on H1 and so
T ∗1 T2 = λ′I, giving T2 = λ′T1.

§2 SU(2) and SL2(R)

Our main objects of study are the following real Lie groups:

SL2(R) := {A ∈ GL2(R) : detA = 1}

SU(2) := {U ∈Mat2×2(C) : U∗U = 1,detU = 1}

We will shortly see that SU(2) and SL2(R) have the same finite-dimensional repre-
sentations. Therefore, one might suspect that the same will be true of their unitary
representations. However, this is not the case and the remaining chapters will be devoted
to highlighting the differences in their unitary representation theories. The key difference
is the following
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Theorem 2.1

SU(2) is compact, whereas SL2(R) is not.

Proof. We can see that SL2(R) is not compact because

det

(
1 0
t 1

)
= 1,

∣∣∣∣ (1 0
t 1

) ∣∣∣∣
R4

=
√
t2 + 2

which can be arbitrarily large. However,

A ∈ SU(2) ⇐⇒ ad−bc = |a|2+|b|2 = |c|2+|d|2 = |a|2+|c|2 = |b|2+|d|2 = 1, ac̄+bd̄ = āb+c̄d = 0

⇐⇒ A =

(
a b
−b̄ ā

)
with |a|2 + |b|2 = 1

which is topologically just a 3-sphere.

§2.1 Finite-Dimensional Representations of SU(2) and SL2(R)

To contextualize the choice of the groups SU(2) and SL2(R), I’ll give a overview of why
they have the same finite-dimensional complex representation theory. Since this is not
my main focus, I will attempt to remain brief; further details can be found in [Knapp].

An important corollary of the SU(2) being topologically a 3-sphere is that it is a simply-
connected Lie group, and so from the general theory we know that its finite-dimensional
representation theory is equivalent to the representation theory of its Lie algebra su(2).
Since SU(2) is a matrix group, its Lie algebra is straightforward to calculate:

su(2) = {x ∈ gl2(C) : exp(Rx) ∈ SU(2)} = {x : exp(Rx) exp(Rx)∗ = 1, det(exp(Rx)) = 1}

Now, det(exp(A)) = eTr(A) and using the Baker-Campbell-Hausdorff Formula we can
expand exp(tx) exp(tx)∗ as

exp(t(x+ x∗) +
1

2
[tx, tx∗] + . . . ) = 1

Differentiating with respect to t and evaluating at t = 0, we’re just left with

su(2) = {x ∈ gl2(C) : Tr(x) = 0, x+ x∗ = 0}

The fact that SU(2) and SL2(R) have the same finite-dimensional complex representation
theory is closely related to the fact that their Lie algebras both complexify to sl2(C).
The simplest way to see this is from involutions on sl2(C): from any antilinear bracket-
preserving involution we can recover a decomposition g = k ⊕ ik and vice versa via the
fixed points of the involution. In our case, the involutions on g = sl2(C) are

σ1

(
a b
c d

)
=

(
ā b̄
c̄ d̄

)
σ2

(
a b
c d

)
=

(
−ā −c̄
−b̄ −d̄

)
corresponding to sl2(R) and su(2) respectively. Note that in general every complex
semisimple Lie algebra has exactly one compact form (a real Lie algebra with negative-
definite Killing form that complexifies to the given semisimple algebra), via an involution
acting exactly as σ2 but on sl2-triples in the algebra. Now, from these decompositions,
we can isomorphically map

su(2)⊗R C→ sl2(C) sl2(R)⊗R C→ sl2(C)
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via x ⊗ λ 7→ λx acting on the real and complex parts as in normal multiplication of
complex numbers. Since representations of Lie algebras are linear objects (as opposed
to representations of Lie groups), the complex representations of a real Lie algebra are
exactly the complex representations of its complexification (for instance, we can extend
by the change of scalars formulation and recover the representation of the real algebra
from the involution). Note that complete reducibility of sl2(R) can be shown in exactly
the same way as we have shown for sl2(C) with the construction of a Casimir element.

One problem remains: the representation theory of SL2(R) is not equivalent to that
of sl2(R) because SL2(R) is not simply-connected! One way of explicitly seeing this is
the following. Any semisimple real Lie group will have an “Iwasawa decomposition” as
products from compact, abelian, and nilpotent subgroups, in our case

A =

(
cos θ − sin θ
sin θ cos θ

)(
r 0
0 1

r

)(
1 x
0 1

)
which is exactly the “QR decomposition” from linear algebra. The map SL2(R) →
K ×A×N is not a group homomorphism, but it is a homeomorphism, and so we can
extract the topological structure of SL2(R): K = S1, A = R>0 ∼= R, N = R. Therefore,
the fundamental group of SL2(R) is Z. In general, the fundamental group lies will be
the center of the universal covering group, and so there is a simply-connected group

S̃L2(R) with center Z which covers SL2(R). However, this is not an algebraic group (and
SL2(R) has no algebraic central extensions) because it has no faithful finite-dimensional
representations, which can be shown to imply that the finite-dimensional irreducible
representations of SL2(R) are the same as SL2(C) (see [Bourbaki]).

Explicitly, we can construct the finite-dimensional irreducible representations in a
similar way as we can for SL2(C): let Vn ⊂ C[x, y] be the (n+ 1)-dimensional space of
homogeneous polynomials of degree n. Then, we can construct both groups’ irreducible
actions on Vn by the same formula:

ρ(

(
a b
c d

)
)(P (x, y)) = P (A−1(x, y)) = P (dx− by,−cx+ ay)

§3 The Compact Case: Unitary Representations of SU(2)

Now, we can examine the unitary representation theory of G = SU(2). For all of the
results of this section, the chiefly important detail is that G is compact, so we will work
in that generality. Similar arguments to the ones I will carry out are done in [Folland]
and [Gruson].

The first significant fact is that we won’t be able to build any new representations
than ones we could from considering finite-dimensional representations:

Theorem 3.1

All irreducible unitary representations of a compact group G are finite-dimensional,
and any unitary representation is a direct sum of irreducibles.

Proof. Suppose (V, ρ) is an irreducible unitary representation of G. Choose an arbitrary
v ∈ V with ||v|| = 1 and let T be the projection onto v:

T (x) := 〈v, x〉v
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Note that this T is self-adjoint and positive because it’s an orthogonal projection. Define
operator

Q(x) =

∫
G

(gTg−1)(x) dg

Now, Q is self-adjoint because

〈Q(x), y〉 = 〈
∫
G

(gTg−1)(x) dg, y〉 =

∫
G
〈(gTg−1)(x), y〉 dg =

∫
G
〈g−1(gTg−1)(x), (g−1)(y)〉dg

=

∫
G
〈(g−1)x, (T ∗g−1)y〉 dg =

∫
G
〈x, (gTg−1)y〉dg = 〈x,Q(y)〉

Q is indeed bounded because unitary operators preserve norm and projections are
norm-decreasing, giving

||Q(x)|| ≤
∫
G
||(gTg−1)(x)||dg =

∫
G
||T (x)||dg <

∫
G
||x||dg = ||x||

and furthermore, we will show Q is compact. The function f : G→ H by f(g) = gv is
uniformly continuous by compactness of G. Therefore, for an ε > 0 we can find a δ > 0
and finitely-many δ-balls B(g1, δ), . . . , B(gm, δ) such that for g ∈ Bi, ||gv − giv|| < ε

2 .
Make these balls into disjoint Bi (by arbitrarily taking complements). Then, for g ∈ Bi,

||(gTg−1)(x)− (giTg
−1
i )(x)|| = ||〈gv, x〉gv − 〈giv, x〉giv|| =

= ||〈gv − giv, x〉gv + 〈giv, x〉(g − gi)v|| ≤ ||〈gv − giv, x〉gv||+ ||〈giv, x〉(g − gi)v||

<
ε||x||

2
+
ε||x||

2
= ε||x||

using that ||v|| = 1. That means, we get a sequence of maps converging to Q in norm by
defining

Qε(x) =
∑
i

∫
Bi

(giTg
−1
i )(x)dg =

∑
i

(giTg
−1
i )(x) · dg(Bi)

which is finite-rank because the image is spanned by {g1v, . . . , gmv}. This shows com-
pactness.

By the Spectral Theorem for compact self-adjoint operators, Q has a basis of eigenvec-
tors {ei} with real eigenvalues λi. Q is positive because T is:

〈Q(x), x〉 =

∫
G
〈(gTg−1)(x), x〉 dg =

∫
G
〈T (g−1x), g−1x〉 dg ≥ 0

This means that the eigenvalues of Q are nonnegative:

λ = λ〈ei, ei〉 = 〈Qei, ei〉 ≥ 0

Now, if Q has only eigenvalues 0, it must be the 0 operator because we have a basis of
eigenvectors. However, Q is not zero because

〈Q(v), v〉 =

∫
G
〈(gTg−1)(v), v〉dg =

∫
G
〈g〈v, g−1v〉v, v〉 dg =

∫
G
〈gv, v〉2 dg > 0

So, let λ be a positive eigenvalue of Q. Define W = Ker(Q− λI). We can see that W
is G-invariant because again using invariance of the Haar measure we have

(Q− λI)(g0w) =

∫
G

(gTg−1)(g0w) dg − g0λw =

∫
G

(gT (g0g)−1)(w)dg − g0λw
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=

∫
G

(g0gTg
−1)(w) dg − g0λw = g0(Q− λI)(w) = 0

Since W is also closed (it’s a kernel), irreducibility gives that W = V . For any orthonormal
set {e1, . . . , en} in W , we have that

n∑
i=1

〈ei, Qei〉 =
n∑
i=1

∫
G
〈g−1ei, (Tg

−1)(ei)〉 dg

The action of G takes orthonormal sets to orthonormal sets and for any orthonormal set
{fi} we have

n∑
i=1

〈fi, T fi〉 =

n∑
i=1

〈fi, 〈v, fi〉v〉 =

n∑
i=1

〈fi, v〉2 ≤ 1

Therefore, since the Haar measure was normalized to have measure 1 on the group we get

n∑
i=1

〈ei, Qei〉 ≤ 1

By definition of W as the given kernel, we can complete the proof with the estimate

n∑
i=1

〈ei, λei〉 = λ
n∑
i=1

〈ei, ei〉 = λn ≤ 1 =⇒ n ≤ 1

λ

and in particular, this gives an upper bound on the dimension of W = V .
Now, when (V, ρ) is an arbitrary unitary representation, the construction of Q and W

remains the same as before, and we still have a finite upper bound on the dimension of W ,
so W is a finite-dimensional subrepresentation which we can decompose into irreducibles.
We can then use Zorn’s Lemma as before to get that V must be a direct sum of irreducibles:
for any maximal collection of pairwise orthogonal irreducible invariant subspaces, if its
direct sum is not all of V then we could find a finite-dimensional subrepresentation to
decompose into irreducibles in the orthogonal complement, contradicting maximality.

From this theorem, we know that unitary representations of SU(2) are built out of the
same atoms as in the finite-dimensional case. To complete the classification of these
atoms, two questions still remain: can all finite-dimensional representations be made
into unitary representations and is there more than one way to do so (up to unitary
equivalence)? The answers are yes and no, respectively:

Theorem 3.2

If G is compact, every finite dimensional representation (V, ρ) possesses a Hermitian
inner product 〈·, ·〉 such that (V, 〈·, ·〉, ρ) is unitary. If (V, ρ) is an irreducible repre-
sentation, then up to re-scaling there is a unique Hermitian inner product for which
the representation is unitary.

Proof. Let (V, ρ) be a finite-dimensional representation of compact Lie group G and
equip V with arbitrary inner product 〈·, ·〉0. Define

〈v, w〉 =

∫
G
〈gv, gw〉0 dg
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using the right Haar measure dg. Then, conjugate-linearity of the inner product, linearity
of the action of g, and linearity of the integral give that 〈·, ·〉 is conjugate-linear. For
v 6= 0,

〈v, v〉 =

∫
G
〈gv, gv〉0 dg > 0

since it is an integral of positive terms (g acts by invertible maps, so g−1v 6= 0). Thus
〈·, ·〉 defines an inner product on V . Finally, for any h ∈ G,

〈hv, hw〉 =

∫
G
〈ghv, ghw〉0 dg =

∫
G
〈gv, gw〉0 dg = 〈v, w〉

by right-invariance of the Haar measure. In particular, (V, ρ) is a unitary representation
on (H, 〈·, ·〉).

Now, suppose V is irreducible and 〈·, ·〉1, 〈·, ·〉2 are two G-invariant inner products
on V , i.e. two inner products for which G is unitary. Pick an orthonormal basis of
V with respect to 〈·, ·〉1 using the Gram-Schmidt process. Let T be the matrix of the
inner product 〈·, ·〉2 with respect to our orthonormal basis (i.e. with matrix coefficients
Tij = 〈ej , ek〉2). Then, since 〈·, ·〉2 is G-invariant, we know

ρ(g)∗Tρ(g) = T

where the adjoint is taken with respect to our basis. Then, ρ(g)∗ is a unitary matrix in
our orthonormal basis because of G-invariance of 〈·, ·〉1. Thus,

Tρ(g) = ρ(g)T

We assumed that V is irreducible, so by Schur’s Lemma we have that T = λI as
desired.

From this theorem, we know the problem of finding irreducible unitary representations
of a compact group G is equivalent to finding its irreducible complex finite-dimensional
representations, which we have already done! Even more, we will see that much like
the representations of finite groups, we can find all irreducible representations inside a
regular representation.

Definition 3.3. For a Lie group G, let H = L2(G, dg) equipped with the standard inner
product

〈f1, f2〉 =

∫
G
f̄1(g)f2(g)dg

The left-regular representation of G is the unitary representation

(Lg(f)) (h) = f(g−1h)

and similarly the right-regular representation Rg has value f(gh). Each is well-
defined (for the proper Haar measure) because the squared-integral is invariant under
shifts by elements of the group. Moreover, we can see that each is unitary because again
by invariance of the Haar measure,∫

G
f̄1(hg−1)f2(hg−1) dh =

∫
G
f̄1(h)f2(h) dh
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Now, suppose (V, ρ) is any unitary representation of a compact group G. For any
w ∈ V , we can form the matrix coefficient map given by

Fv(w) = Fv,w =

(
g 7→ 〈v, gw〉

)
whose image is in L2(G) because the action of g and 〈v, ·〉 are continuous and continuous
functions on a compact set are square-integrable. Then, F is a map of representations
because

RgFv,w(h) = Fv,w(hg) = 〈v, hgw〉 = Fv,gw(h)

and so Fv is an intertwining operator with respect to the given action on V and the
right-regular representation. Additionally, Fv is nonzero for nonzero v because

Fv(v) =

(
g 7→ 〈v, gv〉

)
=⇒ Fv,v(e) = ||v||2

If V is irreducible, Schur’s Lemma tells us that Fv is an isomorphism onto its image for
any nonzero v, and so every irreducible representation of G can be found inside L2(G).
In fact:

Theorem 3.4 (Peter-Weyl Theorem)

Matrix coefficients of irreducible representations of G are orthogonnal and span a
dense subspace of L2(G). In particular, we have the following Hilbert space direct
sum (i.e. the closure of the algebraic direct sum) decomposition:

L2(G) =
⊕
V irred

CdimV ⊗ V

Proof. First, for a single irreducible unitary representation (V, ρ), suppose we take two
different choices of vectors v, w, v′, w′ ∈ V . Defining similar operators as before:

T (x) = 〈v, x〉v′ Q(x) =

∫
G

(gTg−1)(x) dg

is an intertwining map on V by the same argument as before. By Schur’s Lemma, Q = λI.
Since V is finite-dimensional, we can take the trace of Q and T , giving

λ dimV = TrQ =
∑
i

∫
G
〈ei, (gTg−1)(ei)〉 dg =

∑
i

∫
G
〈g−1ei, (Tg

−1)(ei)〉 dg = TrT

since the image of an orthonormal basis under g−1 is orthonormal. If we include v in
some orthonormal basis, we can see

λ dimV =
∑
i

〈ei, 〈v, ei〉v′〉 = 〈v, v′〉 =⇒ λ =
〈v, v′〉
dimV

Finally,

1

dimV
〈v, v′〉〈w′, w〉 = 〈w′, Qw〉 =

∫
G
〈w′, 〈v, g−1w〉gv′〉dG =

∫
G
〈v, g−1w〉〈w′, gv′〉 dG

=

∫
G
Fv,w(g−1)Fv′,w′(g) dg =

∫
G
Fv,w(g)Fv′,w′(g) dg = 〈Fv,w, Fv′,w′〉L2
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We can use the same method for nonisomorphic irreducible representations V, V ′: T is
now an operator from V to V ′ and Q is an intertwining map and so by Schur’s Lemma
Q = 0; using the last line of calculation in reverse with λ = 0, the matrix coefficients are
orthogonal. Note that these orthogonality relations almost immediately give that the
characters of G are orthonormal.

Now, let (V, ρ) be an irreducible unitary representation. Define Φ : V → HomG(V,L2(G))
via

Φ(v) =

(
w 7→ Fv,w

)
This Φ is anti-linear because

Fλ1v+λ2v′,w(g) = λ1〈v, gw〉+ λ2〈v′, gw〉

For v 6= 0, F (v) 6= 0 because as previously shown Fv,v(e) = ||v||2, and so Φ is injective.
Moreover, f ∈ HomG(V,L2(G)) means that f is linear and f(v)(gh) = f(hv)(g). The
map w 7→ f(w)(e) is therefore a continuous linear functional on V , and so by the Riesz
Representation Theorem there exists v ∈ V such that f(w)(e) = 〈v, w〉. Putting these
two properties together, f(w)(g) = f(gw)(e) = 〈v, gw〉 = Fv,w(g). Thus, Φ is bijective,
and so (e.g. by reversing the role of v and w) we can obtain a vector space isomorphism
between V and HomG(V,L2(G)), so HomG(V,L2(G)) is the desired multiplicity space.
Forming

H =
⊕
V irred

HomG(V,L2(G))⊗ V

we can see that H = L2(G) because otherwise its orthogonal complement would be a
subrepresentation of L2(G) and contain some irreducible finite-dimensional subrepresen-
tation, which is in the algebraic direct sum, giving a contradiction (by matrix coefficient
orthogonality).

§4 Unitary Representations of SL2(R)

With a very nice theory developed for the compact SU(2), the goal in this final chapter
will be to demonstrate ways the analogous statements fail when working with the
noncompact SL2(R). The main sources for this section will be [Knapp] and [Lang:
SL2(R)].

Theorem 4.1

The only finite-dimensional unitary representation of SL2(R) are the trivial ones.

Proof. Let (H, ρ) be a finite-dimensional unitary representation of SL2(R). Its kernel
G′ ⊂ G must be a closed normal subgroup of G because ρ is a continuous group
homomorphism.

Define

A =

(
1 1
0 1

)
, Bk =

(√
k 0

0 1√
k

)
∈ SL2(R)

Then, for k 6= 0 we have

B−1
k AkBk =

(
1√
k

0

0
√
k

)(
1 k
0 1

)(√
k 0

0 1√
k

)
=

(
1 1
0 1

)
= A

10
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Since ρ(A) is unitary, the finite-dimensional spectral theorem gives that ρ(A) is diagonal-
izable with (possibly repeated) eigenvalues λ1, . . . , λn. Therefore,

Tr ρ(Ak) = Tr ρ(BkAB
−1
k ) = Tr(ρ(Bk)ρ(A)ρ(Bk)

−1) = Tr ρ(A)

=⇒ λ1 + · · ·+ λn = λk1 + · · ·+ λkn

for all k 6= 0 and in particular for k > n. This means we must have λ1 = · · · = λn = 1,
and so A ∈ G′. However, I claim the only nontrivial proper normal subgroup of SL2(R)
is {±I}. This lemma implies G′ = G and so the representation is trivial.

Lemma 4.2

The only nontrivial proper normal subgroup of SL2(R) is {±I}.

Proof. Consider the standard action of SL2(R) on R2 by matrix-vector multiplication.
Because this action is linear it descends to an action on RP1, the set of lines in R2. For
any four of these lines spanned by, say, v1, v2, v3, v4, then possibly changing signs of one of
the vi, there is a matrix A such that Av1 = v3, Av2 = v4 with positive determinant, and
so A′ = 1√

detA
A ∈ SL2(R) with A′(Rv1) = v3, A

′(v2) = v4, a stronger form of transitivity.

Fix p = [1 : 0], which by transitivity satisfies R2 = G/Stab(p) as sets. First, we will
show this Gp = Stab(p) is maximal in the sense that it is only properly contained in
G. Suppose for the sake of contradiction there were some strict inclusion Gp ⊂ G0 ⊂ G,
then for g /∈ Gp, g ∈ G0 and g0 /∈ G0 by our transitivity calculation on R2 = G/Gp there
must exist h ∈ G such that hGp = Gp and h(gGp) = g0Gp. This means h stabilizes
p and so hg ∈ G0. This is a contradiction because our last coset equation then gives
g−1

0 hg ∈ Gp ⊂ G0, meaning g0 ∈ G0. So, we have shown Gp is maximal.

Now, recall N := {
(

1 t
0 1

)
: t ∈ R} ⊂ Gp from our Iwasawa decomposition and

suppose G′ is any normal subgroup of G. We will show now that G′ is a subgroup of
Gp. Suppose for the sake of contradiction G′ is not a subgroup of Gp. Then we must
have Gp ( GpG

′ and so by maximality GpG
′ = G. In the quotient π : G→ G/G′, this

means π(Gp) = π(G) and so π(NG′) = π(N), meaning π(NG′) is normal in π(G) by
normality of N in G. In particular, conjugating N by the matrix swapping the two

coordinates, we know N ′ = {
(

1 0
t 1

)
: t ∈ R} ⊂ NG′. Then, N and N ′ generate G by

the LU decomposition from linear algebra. Thus, NG′ = G. Now, N is abelian (the
group operation is addition in the upper right entry), meaning G/G′ = N/(N ∩G′) is
abelian, i.e. [G,G] ⊂ G′. Furthermore, N,N ′ ⊂ [G,G] via(

1
r 0
0 r

)(
1 x
0 1

)(
1
r 0
0 r

)−1(
1 x
0 1

)−1

=

(
1 x+ r2x
0 1

)
since x + r2x = t has solutions for any t. Thus, [G,G] = G and so G′ = G. This is a
contradiction, so G′ is a subgroup of Gp.

Finally, this tells us that G′ stabilizes p and so by normality G′ =

(
0 1
1 0

)
G′
(

0 1
1 0

)
stabilizes

(
0 1
1 0

)
p = [0 : 1]. The only elements which can stabilize both [0 : 1] and [1 : 0]

are ±I, so we are done.

11
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As a corollary to this theorem, we know that there is no overlap between irreducible
unitary representations of SL2(R) and of SU(2). There is still a canonical representation
of SL2(R), namely the regular representation of L2(G), and one might expect that we
can still find all irreducible representations of G inside of L2(G). We will see that this is
not true: there are two classes of irreducible representations which are in L2(G) and one
which is not.

§4.1 Action by Möbius Transformations

To explicitly construct the irreducible representations of G, it will be necessary to consider
another natural action of G, this time on the upper half plane H of the complex numbers.
In particular, let SL2(R) act by fractional linear transformations:(

a b
c d

)
· z =

az + b

cz + d

This map is well-defined because cz + d = 0 would require z = −d
c to be real, and does in

fact map H to itself because for z = z1 + iz2,

Im

(
a b
c d

)
· z =

az2cz1 + az2d− az1cz2 − cz2b

(cz1 + d)2 + c2z2
2

=
z2

(cz1 + d)2 + c2z2
2

> 0

This action is transitive:
√
z2i+ z1√

z2
1√
z2

= z2i+ z1 = z; and ad− bc =
√
z2

1
√
z2
− 0 = 1

The stabilizer of the imaginary unit can be computed as follows:

i =
ai+ b

ci+ d
=⇒ di− c = ai+ b =⇒ d = a, b = −c

Conversely, we see

ai+ b

−bi+ a
= (ai+ b)

a+ bi

a2 + b2
=
ia2 + ib2

a2 + b2
= i

Therefore, the stabilizer is {
(
a b
−b a

)
: a2 + b2 = 1}, i.e. the set of rotation matrices, Rθ

which are topologically form a circle. In particular, SL2(R)/S1 acts freely on the upper
half-plane.

Now, it is a standard result from Riemannian geometry (see [Lee]) that any action
of a Lie group that is proper — meaning the pre-images under (g, x) 7→ (g · x, x) of
compact sets in X ×X are compact in G×X — has an invariant metric. Properness is
satisfied here because if a sequence escapes to infinity in G×X (in the Euclidean metric
on X), then its image must as well (e.g. by the preceding calculation of the imaginary

component). I claim that the metric m = dx2+dy2

y2
= dz dz̄

Im(z)2
is G-invariant. This is a

standard computation in coordinates:

Im(gz)2 =

(
az + b

cz + d
− az̄ + b

cz̄ + d

)2

=

(
(az + b)(cz̄ + d)− (az̄ + b)(cz + d)

|cz + d|2

)2

=

(
z(ad− bc)− z̄(−bc+ ad)

|cz + d|2

)2

=
Im(z)2

|cz + d|4

12
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dgz =
a(cz + d)− c(az + b)

(cz + d)2
dz =

dz

(cz + d)2

dgz =
dz̄

(cz̄ + d)2

=⇒ dgz dgz

Im(gz)2
=

|cz + d|4 dz dz̄
Im(z)2(cz + d)2(cz̄ + d)2

=
dz dz̄

Im(z)2

Now, because
√
|det y2I| = y2 (y is positive), the Riemann volume form of the invariant

metric is given by dxdy
y2

. Note that it is also convenient to instead consider the action of

SL2(R) on the unit disc model D of hyperbolic space by map f : H → D by f(z) = z−i
z+i .

The action is easiest to write by thinking of SL2(R) as a Lie group it is isomorphic to:

SU(1, 1) = {
(
α β
β̄ ᾱ

)
: |α|2 − |β|2 = 1}

An explicit isomorphism can be given by a = Re(α) − Im(β), b = Re(β) − Im(α), c =
Re(β) + Im(α), d = Re(α) + Im(β). The action on D is given by

g · w =
αw + β

β̄w + ᾱ

A similar calculation as before shows that the metric (1− |w|2)−2 dx dy is G-invariant
and has volume form dw dw̄

1−w̄w . Finally, note that by adding together our formulas from
above, our Lie group isomorphism maps the rotation matrices to(

cos θ − sin θ
sin θ cos θ

)
7→
(

cos θ + i sin θ 0
0 cos θ − i sin θ

)
=

(
eiθ 0
0 e−iθ

)

§4.2 Principal Series Representations

Using this action, we can begin to construct the irreducible unitary representations of
SL2(R). The subsequent list of families of irreducibles will be exhaustive, but I will not
attempt to prove this. One of the few similarities between the SL2(R) case and the case
of SU(2) is a sort of reducibility of the regular representation into a “direct integral”:
without attempting to be too precise (the details can be found in [Deitmar]) we have:

Theorem 4.3 (Plancherel Theorem)

For G = SL2(R) (or any unimodular “Type I” Lie group), there is a unique measure
µ on Ĝ (equivalence classes of irreducible unitary representations of G) such that
for f ∈ L1(G) ∩ L2(G),

||f ||22 =

∫
(Ĝ,π)

||π(f)||2HS dµ(π)

where HS denotes the Hilbert-Schmidt norm. Moreover, as G×G representations
we have

L2(G) =

∫
Ĝ
π ⊗ π∗ dµ(π)

As we integrate over the space of irreducibles, there are “discrete” points and ones
which exist in a continuum, similar to the spectrum of an operator. The former are called

13
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discrete series representations and the latter are called principal series representations.
I’ll begin with a discussion of principal series representations, following [Knapp].

On H = L2(R), define representations P iv,+,P iv,− for v ∈ R \ {0} by

ρiv,+

((
a b
c d

))
f(x) = | − bx+ d|−1−ivf

(
ax− c
−bx+ d

)

ρiv,−

((
a b
c d

))
f(x) = sgn(−bx+ d)| − bx+ d|−1−ivf

(
ax− c
−bx+ d

)
These representations are unitary because∫

R
| − bx+ d|−1−ivf

(
ax− c
−bx+ d

)
| − bx+ d|−1−ivg

(
ax− c
−bx+ d

)
dx =

=

∫
R
f(y)g(y) dx

using change of variables (and a real raised to the power of a multiple of i is on the unit
circle) with

d

dx

ax− c
−bx+ d

=
a(−bx+ d) + b(ax− c)

(−bx+ d)2
=

1

(−bx+ d)2

and similarly for P iv,−. Let E be an orthogonal projection onto some closed invariant
subspace of L2(R). We showed in Chapter 3 of this report that such an E commutes
with the action of G. For any y ∈ R,

ρ+,iv

(
1 0
y 1

)
f(x) = f(x− y)

and so E commutes with shifts. It is a fact in Fourier analysis that if an operator
commutes with translations there exists an m ∈ L∞(R) such that (Ef̂)(ξ) = m(ξ)f̂(ξ)
for any f ∈ L2(R) [Stein]. Then, E2 = E is a projection, so m2 = m i.e. m is 0 or 1
almost everywhere. Now, E also commutes with

ρ+,iv

(
r 0
0 1/r

)
f(x) = |r|1+ivf(r2x)

and so m(x)f̂(r2x) = m(r2x)f̂(r2x), meaning m is constant on the positive and negative
half-lines. That means there are two nontrivial closed invariant subspaces: the space
of functions whose Fourier transform is constant on the positive half-line and the space
whose transform is constant on the negative half-line. The way to get a representation
which is truly irreducible is to instead act on the space of densities ϕ(x)(dx)(1+s)/2 which
can be integrated against (pseudo-densities for P iv,−) [Gruson].

§4.3 Discrete Series Representations

The discrete portion of the direct integral is comprised of the discrete series representations,
which are exactly the irreducible representations whose matrix coefficients are in L2(G)
(as we had for all irreducibles of SU(2)) [Gruson]. Now, there is a general theorem that a
simple Lie group has a holomorphic discrete series representation — one which forms some
Hilbert space of holomorphic functions — iff it has a maximal compact subgroup with
infinite center [Knapp]. In our case, the rotation matrices S1 form a maximal compact
subgroup of SL2(R), and the Hilbert space will come from holomorphic functions on H.

14
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For any positive integer n, define H+
n as the space of holomorphic densities on H. These

are holomorphic functions ψ on H, which we write formally as ψ(z)(dz)n/2, satisfying
the property that ∫

H
|ψ(z)|2yn−2 dz dz̄ <∞

using the invariant metric we calculated in the last section. We can equip H+
n with a

Hilbert space structure via

〈ψ(z)(dz)n/2, φ(z)(dz)n/2〉 :=

∫
H
ψ(z)φ(z)ymax(n−2,0) dz dz̄

which is well-defined by Hölder’s inequality. We can obtain a representation of SL2(R)
by the action (

a b
c d

)
·
(
ψ(z)(dz)n/2

)
:= ψ(

az + b

cz + d
)

1

(cz + d)n
(dz)n/2

Now, SL2(R) acts by holomorphic maps on H and so this density is still holomorphic.
Moreover, this is in fact a unitary representation because for n > 1 we can calculate

〈ρg
(
ψ(z)(dz)n/2

)
, ρg

(
φ(z)(dz)n/2

)
〉 =

∫
H

ψ(g · z)
(cz + d)n

φ(g · z)
(cz + d)n

Im(z)n
dz dz̄

Im(z)2

=

∫
H

ψ(g · z)
(cz + d)n

φ(g · z)
(cz + d)n

Im(z)n
dgz dgz

Im(gz)2
=

∫
H
ψ(g · z)φ(g·z)Im(gz)n−2 dgz dgz

Im(gz)2
= 〈ψ, φ〉

using the differentials we calculated earlier.
We now show that H+

n is irreducible. When we shift our action of G to the action of
SU(1, 1) on D, the action on holomorphic functions becomes((

α β
β̄ ᾱ

)
· f
)

(w) = (−β̄w + α)−nf

(
ᾱw − β
−β̄w + α

)
Because we assumed f is holomorphic, and so analytic, the densities wk(dw)n/2 for k ≥ 0
form a topological basis. Moreover, these wk(dw)n/2 are orthogonal: if k1 < k2

〈wk1 , wk2〉 =

∫
D
w̄k1wk2(1− |w|2)n−2 dx dy =

∫
D
wk2−k1 |w|2k1(1− |w|2)n−2 dx dy = 0

by symmetry. Now, rotations act on these functions by(
eiθ 0
0 e−iθ

)
· wk = w 7→ e−niθ(

e−iθw

eiθ
)k = e(−n−2k)iθwk

so they are eigenfunctions of the action of S1. This means any closed G-invariant (and
so S1-invariant) subspace S must contain elements of our orthogonal basis. However, a
general g acts on wk by

(g · wk)(w) = (−β̄w + α)−n
(
ᾱw − β
−β̄w + α

)k
= (−β̄w + α)−n−k(ᾱw − β)k

=

(∑
i=0

−β̄i(−1)i
(n+ k + i)!(−β̄w + α)−n−k−i

(n+ k)!i!
zi
)( k∑

i=0

(
k

i

)
(ᾱw)k−i(−β)i

)
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It can be shown that these coefficients are all nonzero [Gruson] and so if S is nonzero it
must be the entire space (Alternatively, this can be shown in a more computationally
friendly way by developing further results on the action of the Lie algebra, which is the
approach taken by [Knapp]).

It is true generally that if one nonzero matrix coefficient of a unitary representation
of a modular group is in L2(G) then all are [Knapp]. Thus, to show the discrete series
representations have matrix coefficients in L2(G), we’ll demonstrate they are on the
constant 1D function.

〈g · 1D, 1D〉 =

∫
D

(β̄w + α)−n(1− |w|2)n−2 dx dy

=

∫
D

( ∞∑
i=0

(
−n
i

)
(β̄w)iα−n−i

)
(1− |w|2)n−2 dx dy =

∫
D
α−n−0(1− |w|2)n−2 dx dy

using the generalized binomial series and the fact that the higher-order terms go to 0. In
particular, letting cn be the remaining integral, we have

〈g · 1D, 1D〉 = α−ncn

The final trick is that we can use the action of g on the point 0 satisfies g · 0 = β
ᾱ and so

1− |g · 0|2 = 1− |β|
2

|α|2
=
|α|2 − |β|2

|α|2
=

1

|α|2
= |α|−2

which means
|〈g · 1D, 1D〉|2 = |α|−2nc2

n = c2
n(1− |g · 0|2)n

Putting all of this together, we can use the G invariance of (1− |w|2)−2 dx dy from the
earlier calculations to obtain the L2-norm of the matrix coefficient is∫

G
|〈g · 1D, 1D〉|2 dg =

∫
G
c2
n(1− |g · 0|2)n dg = c2

n

∫
D

(1− |z|2)n−2 dx dy <∞

§4.4 Complementary Series Representations

The final class of irreducible representations of SL2(R) are the ones which are not in
the regular representation, and furthermore aren’t tempered (there is some ε > 0 such
that there is no basis of the representation with matrix coefficients in L2+ε(G)) [Knapp].
These complementary series representations are parameterized by a real s ∈ (0, 1) and
can be written as densities of the form ϕ(x)(dx)(1+s)/2. Acting similarly as the other
families, the inner product we equip this space with is the following:

〈ϕ,ψ〉 =

∫ ∞
−∞

∫ ∞
−∞

ϕ(x)ψ(y)|x− y|s−1 dx dy

Proof that this is an exhaustive list of irreducible representations will remain outside of
the scope of this paper. Further details can be found in, for instance, [Godement].

§5 Conclusion

For SU(2), compactness allowed us to show that the classification of unitary represen-
tations is not much more than the standard finite-dimensional representation theory:
every unitary irreducible is finite-dimensional and conversely every finite-dimensional
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representation is unitarizable. Furthermore, the Peter-Weyl Theorem tells us that the
regular representation of SU(2) decomposes as a topological direct sum of the irreducibles
with multiplicity given by their dimension, and orthonormal characters.

Despite having the same finite-dimensional complex representations as SU(2), the
noncompactness of SL2(R) makes its unitary representation theory significantly less well-
behaved. The finite-dimensional representations tell us little because no finite-dimensional
representations are unitarizable. Instead of a discrete set of unitary irreducibles that we
had for SU(2), two of the families of unitary irreducibles of SL2(R) are over continuously-
varying parameters. Finally, only two of the provided families arise from the regular
representation.
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