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This semester we have constructed and found various properties of irreducible highest-
weight representations of symmetrizable Kac-Moody algebras. Such representations
are of interest from a purely mathematical perspective and because highest-weight
representations often arise in quantum field theory. Similarly, it’s natural from a physical
and mathematical perspective to ask when an algebra acts unitarily. In this project, I
will examine when a symmetrizable Kac-Moody algebra or the Virasoro algebra (as well
as the Heisenberg algebra) have unitary actions on their highest-weight representations.
There are complete classifications in all cases. I have decided to devote a large portion of
the project to going through all of the details of the classification given in Chapter 11 of
Kac’s book ([10]) because many of them come from portions of previous chapters we did
not discuss in class.

§1 Compact Forms and Unitarizability

To motivate our definition of a unitarizable representation, let’s first restrict to considering
the case when g = g(A) is a finite-dimensional complex simple Lie algebra. Recall that
a real Lie algebra is called compact if its Killing form is negative definite. Due to a
theorem of Cartan [1], every such g has a unique (up to isomorphism) compact real form
k, a real Lie subalgebra of g such that

g = k⊗R C = g⊕ ig

which is given by the fixed points of the compact antilinear involution defined on the
Chevalley generators {ei, hi, fi}i by

ω0(ei) = −fi ω0(fi) = −ei ω0(hi) = −hi

Letting G be the connected, simply-connected complex Lie group associated to g, a
question for which much study has been devoted is the classification of irreducible unitary
representations of G and their relation to the algebraic structure of g and maximal compact
subgroup K (with Lie algebra k), since the theory for compact groups is straightforward.
Irreducible unitary representations of G fall into a larger nice class of representations
called admissible representations, which are representations V on which K acts
unitarily and each irreducible unitary representation of K has finite multiplicity in V . It
is a nontrivial result of Harish-Chandra that an irreducible admissible (g, k)-module V is
the set of K-finite vectors of an irreducible unitary representation of G if and only if V
is unitarizable [2].

Elaborating further in [2], an admissible (g, k)-module for finite-dimensional g is a
finitely-generated g module on which U(k) acts locally nilpotently and such that for all
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k-modules W , Homk(W,V ) is finite-dimensional. The K-finite vectors of V are members
of the algebraic direct sum

V finite =
⊕

U irred unitary rep of K

V [U ]

where V [U ] is the copies of U in V . Members of V finite are precisely those v for which
the span over all k of k · v is finite-dimensional. Finally, V is unitarizable if there
exists a positive-definite Hermitian form on V which is infinitessimally unitary, i.e.
H(g · x, y) = −H(x, ω0(g) · y) for all x, y ∈ V, g ∈ g (on the compact subalgebra this is
just a differentiated version of unitarity). With this background in mind, our goal will
be to extend this notion of unitarizability to Kac-Moody algebras and discuss which
highest-weight representations are unitarizable.

§1.1 Compact Form: Kac-Moody Algebra

Chapter 2 of [10] gives a definition of the compact involution for a Kac-Moody algebra.
Because the Cartan subalgebra is not spanned by simple coroots when not in the finite-
dimensional simple case, slightly more care must be taken to correctly extend antilinearly.
Define a real realization of a generalized Cartan matrix A as a triple (hR,Π,Π

∨), where
hR is a real vector space of dimension 2n− l, such that (hR⊗RC,Π,Π∨) is a usual complex
realization of A. The fact that the entries of A are integers means we can always find
an essentially unique real realization. From here on we will assume that one has been
chosen and denote by g(A)R the real subalgebra of g(A) generated by the ei, fi, and hR.

Define the compact involution ω0 on g(A) by extending antilinearly

ω0(ei) = −fi ω0(fi) = −ei ω0(h) = −h, ∀h ∈ hR

As in the finite-dimensional theory, the compact form k(A) of g(A) is defined as the
real Lie algebra consisting of the set of fixed points of ω0. Since ω0 is an antilinear
involution, k(A)⊗R C = k(A)⊕ ik(A) = g(A).

Definition 1.1. A pair (V,H), where V is a g(A)-module and H is a Hermitian form
on V , is called contravariant if H(g · x, y) = −H(x, ω0(g) · y) for all g ∈ g(A), x, y ∈ V .
If additionally H is positive-definite then (V,H) is unitarizable.

Our first example of a Hermitian form on a representation of an infinite-dimensional
symmetrizable Kac-Moody algebra is on g(A) itself with the adjoint representation.
Define (·|·)0 on g(A) by

(x|y)0 := −(ω0(x)|y) for x, y ∈ g(A)

where (·|·) is a usual standard bilinear form we have defined previously. Bilinearity of
the standard form and antilinearity of ω0 guarantee that (·|·)0 is Hermitian. Recall the
standard (·|·) pairs gα and gβ nondegenerately when α = −β and otherwise orthogonally.
Therefore, since ω0 exchanges gα and g−α, (·|·)0 pairs gα and gβ nondegenerately if α = β
(including α = β = 0) and otherwise orthogonally.

Finally, to verify that (·|·)0 is contravariant, we can directly compute by splitting into
real and imaginary parts that

([x, y]|z)0 = −(ω0([x1 + ix2, y1 + iy2])|z) =

= −(ω0([x1, y1])− iω0([x1, y2])− iω0([x2, y1])− ω0([x2, y2])|z) =
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= (−[ω0(x1), ω0(y1)] + i[ω0(x1), ω0(y2)] + i[ω0(x2), ω0(y1)] + [ω0(x2), ω0(y2)]|z) =

= −([ω0(x1), ω0(y1)]|z)+i([ω0(x1), ω0(y2)]|z)+i([ω0(x2), ω0(y1)]|z)+([ω0(x2), ω0(y2)]|z) =

= (ω0(y1)|[ω0(x1), z])−i(ω0(y2)|[ω0(x1), z])−i(ω0(y1)|[ω0(x2), z])−(ω0(y2)|[ω0(x2), z]) =

= (ω0(y1)− iω0(y2)|[ω0(x1), z]− i[ω0(x2), z]) = (ω0(y)|[ω0(x), z]) = −(y, [ω0(x), z])0

Thus, (·|·)0 is a first example of a contravariant Hermitian form for a Kac-Moody algebra.
A form with these properties is also essentially unique: from any contravariant Hermitian
form H we can recover an invariant bilinear form on g by restricting to k so that
H([g, x], y) = −H(x, [g, y]) and extending complex linearly. We can recover H from this
bilinear form exactly how we defined (·|·)0. Since we have previously discussed that
invariant bilinear forms with these properties are unique up to scaling, the Hermitian
form must be too.

Note that when g(A) is not finite-dimensional the adjoint representation will not be
highest weight, so (·|·)0 is still not one of the forms we are primarily concerned with.
However, the construction will be useful.

§2 Unitarizability for Symmetrizable Kac-Moody Algebras

In this section, I’ll show that with our current definitions, the unitarizable highest-weight
modules of symmetrizable Kac-Moody algebras are precisely the integrable ones, and
(up to a constant) uniquely so. I will go through these results rather carefully, following
[10] Chapter 11, because they require some background from earlier chapters we didn’t
cover in class.

First, the following theorem will tell us that actually the main question will just be
which contravariant forms are positive-definite.

Theorem 2.1

For any Λ, L(Λ) has a unique (up to a constant) nondegenerate contravariant
Hermitian form H. With respect to H, the weight spaces of L(Λ) are orthogonal.

Proof. We’ll begin by first constructing a bilinear form which is contravariant with respect
to the Chevalley involution by recalling some of our discussion of lowest-weight modules.
Recall that the contragredient representation L(Λ)∗ is defined as the dual vector space
to L(Λ) equipped with the action πcontra

Λ defined by

πcontra
Λ (g)λ =

(
x 7→ λ(−πΛ(g)x)

)
Define the submodule

L∗(Λ) :=
⊕
λ≤Λ

(L(Λ)λ)∗ ⊂ L(Λ)∗

This L∗(Λ) is a lowest-weight module for weight −Λ because for 0 6= λ ∈ (L(Λ)Λ)∗,

πcontra
Λ (fi)λ =

(
x 7→ λ(−πΛ(fi)x) = 0

)
= 0

πcontra
Λ (h)λ =

(
x 7→ λ(−πΛ(h)x) = λ(−〈Λ, h〉x) = −〈Λ, h〉λ(x)

)
= −〈Λ, h〉λ

U(g(A))λ = L∗(Λ)
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where the last equality can be obtained by expanding any element of (L(Λ)λ′)
∗ in terms

of a basis and using the analogous property for L(Λ) (recall, weight spaces in the category
O are finite-dimensional). Furthermore, this representation is irreducible: if V is a
submodule, its vanishing set in L(Λ) must be a submodule (and hence 0 or L(Λ)) because

φ(g · x) = (πcontra
Λ (g)φ)(x) = φ′(x) = 0

Thus, there is a bijection (since dualizing again gives an irreducible highest-weight
representation) between h∗ and irreducible lowest-weight representations via Λ↔ L∗(−Λ).

Define an action π∗Λ on L(Λ) by

π∗Λ(g)x := πΛ(ω(g))x

This equips L(Λ) itself with the structure of a lowest-weight module of weight −Λ:

π∗Λ(fi)vΛ = πΛ(−ei)vΛ = 0

π∗Λ(h)vΛ = πΛ(−h)vΛ = −〈Λ, h〉vΛ

U(g(A))vΛ = ω(U(g(A)))vΛ = L(Λ)

which is irreducible because pre-composing the action with ω does not change whether a
subset is a submodule. By the correspondence between h∗ and irreducible lowest-weight
modules, there is an isomorphism Φ : (L(Λ), π∗Λ)→ (L∗(Λ), πcontra

Λ ). Define bilinear form
B on L(Λ) by

B(x, y) := Φ(x)y

This B is nondegenerate because Φ is an isomorphism and contravariant with respect to
ω because

B(g · x, y) = Φ(πΛ(g)x)y = Φ(π∗Λ(ω(g))x)y = πcontra
Λ (ω(g))Φ(x)y =

= (Φ(x))(−πΛ(ω(g))y) = −B(x, ω(g) · y)

If x ∈ L(Λ)λ, y ∈ L(Λ)µ for λ 6= µ then

B(h · x, y) = −B(x, ω(h) · y) =⇒ B(λ(h)x, y) = −B(x,−µ(h)y)

=⇒ B(x, y) (λ(h)− µ(h)) = 0 =⇒ B(x, y) = 0

i.e. distinct weight spaces are orthogonal under B. We can use this fact to show that B,
as a nondegenerate contravariant bilinear form, is unique up to a constant: any form B′

induces a map L(Λ)→ L∗(Λ). This B′ is actually in this restricted dual L∗(Λ) because
for any x ∈ L(Λ), B(ω0(x), ·) has a nonzero action on only finitely-many weight spaces
(and any representation in O has finite-dimensional weight spaces) by orthogonality
of distinct weight spaces. Then, this map can be made into a g(A)-module morphism
because

B′(g · x, ·) = B′(x, ·) ◦ (−ω(g)·)

so we choose an action defined similarly as π∗Λ, making L∗(Λ) a highest-weight module.
This map is a g(A)-module isomorphism by nondegeneracy of B. Hence, to complete
the proof of essential uniqueness of B we can use a form of Schur’s Lemma: the only
endomorphisms of any L(Λ) are scalar multiples of the identity because highest-weight
vectors must be sent to highest weight vectors. Uniqueness also immediately gives
symmetry because defining B by Φ(y)x also gives such a form (and B(x, x) = cB(x, x)
implies the constant c = 1).
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Using this construction, we can construct the desired Hermitian form on L(Λ). Letting
L(Λ)R := U(g(A)R)vΛ, which complexifies to L(Λ), we can define H by restricting B to
L(Λ)R and then extending conjugate-linearly. In general, any real bilinear form can be
extended antilinearly through tensoring or concretely as

H(x1 + ix2, y1 + iy2) := BR(x1, y1)− iBR(x1, y2) + iBR(x2, y1) +BR(x2, y2)

Since ω0 agrees with ω on g(A)R, the restriction is ω0-contravariant. By defining the
form via antilinear extension just as we did for ω0, the extension is ω0-contravariant on
all of L(Λ). This H is also again unique up to a constant: any form must restrict to
a real contravariant form that extends complex-bilinearly to a scalar multiple of our
constructed B. Finally, orthogonality of weight spaces under B immediately gives that
weight spaces are orthogonal under H.

There is another way of defining B and H given in the earlier ninth chapter of [10]
which can be useful for some computations and is helpful understanding the form. We
know we will have orthogonal weight spaces, so the weight-space structure and the value
on the one-dimensional highest-weight space should tell us the form. To do so, for
a fixed highest-weight vector vΛ, define the expectation 〈v〉 ∈ C of v ∈ L(Λ) as its
vΛ-component:

v = 〈v〉vΛ +
∑

α∈Q+\{0}

vΛ−α

Then B can be constructed as

B(gvΛ, g
′vΛ) = 〈ω̂(g)g′vΛ〉

where ω̂ is the multiplication-reversing extension of −ω to all of U(g(A)). This is
ω-contravariant because

B(g0gvΛ, g
′vΛ) = 〈ω̂(g0g)g′vΛ〉 = 〈ω̂(g)− ω(g0)g′vΛ〉 = B(g0gvΛ,−ω(g0)g′vΛ)

and symmetric because

B(gvΛ, g
′vΛ) = 〈ω̂(g)g′vΛ〉 = 〈ω̂(ω̂(g)g′)vΛ〉 = 〈ω̂(g′)gvΛ〉

from the definition of the expectation. Similarly, we can construct H as

H(gvΛ, g
′vΛ) = 〈ω̂0(g)g′vΛ〉

where ω̂0 is the antilinear multiplication-reversing extension of −ω0 to all of U(g(A)).
Note that both have normalization H(vΛ, vΛ) = 1 = B(vΛ, vΛ), which we will now assume
to eliminate the constant factor.

With a construction and understanding of the contravariant form, we want to show
that our constructed H is positive-definite exactly when L(Λ) is integrable. Along the
way, we will also prove and use that the earlier-constructed contravariant form (·|·) on
g(A) (with the adjoint representation) is positive definite on n− + n+. However, it is
positive-definite on the Cartan only in the finite-type case (which is a highest-weight
integrable representation, thus unitarity here follows from our results). First we will need
two lemmas. The content and proofs of both are similar to results we had in class in our
computations of character formulas.
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Lemma 2.2

Let Λ ∈ P+ be a dominant integral weight and λ, µ ∈ P (Λ). Then,

1. (Λ|Λ)− (λ|µ) ≥ 0, with equality iff λ = µ ∈W · Λ.

2. |Λ + ρ|2 − |λ+ ρ2| ≥ 0 with equality iff λ = Λ (recall ρ is defined by 〈ρ, α∨i 〉 =
1
2aii).

Proof. 1. First, assume that λ ∈ P+. Define β := Λ− λ, β1 := Λ− µ. Then,

(Λ|β) + (λ|β1) = (Λ|Λ)− (Λ|λ) + (λ|Λ)− (λ|µ) = (Λ|Λ)− (λ|µ)

Since Λ is a highest weight, we know β, β1 ∈ Q+. Therefore, for some nonnegative
integers ki,

(Λ|β) =
∑
i

ki(Λ|αi) =
∑
i

ki
εi
〈Λ, α∨i 〉 ≥ 0

because Λ is dominant integral. The same argument shows that (λ|β1) ≥ 0, using the
assumption λ ∈ P+. Thus, (Λ|Λ) − (λ|µ) ≥ 0 with equality iff (Λ|β) = (λ|β1) = 0. In
this case, 〈Λ, α∨i 〉 = 0 for all i ∈ supp(β).

Suppose λ 6= Λ, i.e. this support is nonempty, and let S be a connected component of
supp(Λ− λ) and n−(S) ⊂ n− the algebra generated by {fi}i∈S . By definition, we have
that

L(Λ)λ ⊂ U(n−)n−(S)L(Λ)λ

In particular, there exists some i ∈ S such that 〈Λ, α∨i 〉 6= 0 in order for L(Λ)λ 6= 0,
giving a contradiction. Thus, λ = Λ. However, with λ = Λ the same argument gives that
(λ|β1) = (Λ|β1) = 0 iff µ = Λ. So, under our working assumption that λ ∈ P+, we have
equality in (1) iff λ = Λ = µ.

Our assumption that λ ∈ P+ was unnecessary due to invariance of (·|·) and P (Λ)
under the Weyl group: for any λ ∈ P (Λ) we have previously shown there is a unique
λ+ ∈ P+ ∩ P (Λ) (minimizing ht(Λ− λ+)) such that λ = wλ+ for some w ∈W , and so

(Λ|Λ)− (λ|µ) = (Λ|Λ)− (wλ+|w(w−1µ)) = (Λ|Λ)− (λ+|w−1µ) ≥ 0

with equality iff λ+ = w−1µ = Λ, i.e. λ = µ ∈W · Λ.
2. We can re-write

|Λ + ρ|2 − |λ+ ρ|2 = (Λ + ρ|Λ + ρ)− (λ+ ρ|λ+ ρ) = ((Λ|Λ)− (λ|λ)) + 2(Λ− λ|ρ)

We just showed that the first term is nonnegative. The second term is given by

2(Λ− λ|ρ) = 2
∑
i

ki(αi|ρ) =
∑
i

ki(αi|αi) ≥ 0

Equality means both terms are 0 and in particular each ki = 0, and so Λ = λ.

We have previously defined one form of ‘partial’ Casimir operator by

Ω0 := 2
∑
α∈∆+

∑
i

e
(i)
−αe

(i)
α

following Kac’s notation where for each positive root α, {e(i)
α }i is a fixed basis of the

root space gα and {e(i)
−α}i is the dual basis with respect to our standard form. This has

6



Jon Hillery (May 5, 2022) Unitarizability

a well-defined action on any g(A)-module V on which only finitely-many positive root
spaces have a nonzero action on any fixed vector v ∈ V , called a restricted representation
(in particular Ω0 acts on every representation from the category O). It was used in the
discussion of an operator Ω that always commutes with the g(A)-action on such a V .

We now define a similar operator acting on x ∈ n− as follows:

Ω1(x) :=
∑
α∈∆+

∑
i

[e
(i)
−α, [e

(i)
α , x]−]

where the subscript − denotes taking the n−-component. This operator is well-defined

because for any x ∈ g−β, we know β ∈ ∆+, [e
(i)
α , x] ∈ gα−β which only has possibly

nonzero n−-component if each αi-component of α is less than the height of β. This Ω1

will be useful in further computations with Ω and Ω0.

Lemma 2.3

For α ∈ ∆+, x ∈ g−α,
Ω1(x) = (2(ρ|α)− (α|α))x

Proof. Let M(0) = U(n−)v be the Verma module of highest weight 0 with generating
highest-weight vector v. The proof will be by two different computations of Ω0x(v) in
M(0). Since M(0) is in O, we do know that Ω0(w) is well-defined for any w ∈M(0) and
in particular for w = xv, so Ω0x(v) is well-defined. By definition,

Ω0x(v) = 2
∑
β∈∆+

∑
i

e
(i)
−βe

(i)
β x(v)

Since v is a highest-weight vector for M(0), meaning e
(i)
β acts by 0 on v,

Ω0x(v) = 2
∑
β∈∆+

∑
i

e
(i)
−β[e

(i)
β , x](v)

Define S := {β ∈ ∆+ : β < α}, allowing us to look at a finite set where this expression
will be nonzero. Again using that v is a highest-weight vector of weight 0 and that
bracketing acts additively on root spaces,

Ω0x(v) = 2
∑
β∈S

∑
i

e
(i)
−β[e

(i)
β , x](v) = 2

∑
β∈S

∑
i

(
[e

(i)
−β, [e

(i)
β , x]] + [e

(i)
β , x]e

(i)
−β

)
(v) =

=
∑
β∈S

∑
i

(
[e

(i)
−β, [e

(i)
β , x]] + [e

(i)
β , x]e

(i)
−β

)
(v) +

∑
β∈S

∑
i

e
(i)
−β[e

(i)
β , x](v) =

=
∑
β∈S

∑
i

(
[e

(i)
−β, [e

(i)
β , x]] + [e

(i)
β , x]e

(i)
−β + e

(i)
−β[e

(i)
β , x]

)
(v) =

=
∑
β∈S

∑
i

[e
(i)
−β, [e

(i)
β , x]](v)

The last equality comes from the following identity:∑
i

[e
(i)
β , x]e

(i)
−β + e

(i)
−β[e

(i)
β , x] = 0
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We can prove this identity as follows: extend our standard form (·|·) to g(A)⊗C g(A) via

(x⊗ y|x′ ⊗ y′) := (x|x′)(y|y′)

For arbitrary α′, β′ ∈ ∆ and z, we have that for any e ∈ gα′ , f ∈ gβ′ ,∑
i

(e
(i)
−α′ ⊗ [z, e

(i)
α′ ]|e⊗ f) =

∑
i

(e
(i)
−α′ |e)([z, e

(i)
α′ ]|f) = −

∑
i

(e
(i)
−α′ |e)(e

(i)
α′ |[z, f ]) =

= −
∑
i

(e
(i)
−α′ |

∑
k

cke
(k)
α′ )(e

(i)
α′ |[z, f ]) = −

∑
i

ci(e
(i)
α′ |[z, f ]) = (e|[f, z]) =

= ([z, e]|f) =
∑
i

(e
(i)
−β′ |[z, e])(e

(i)
β′ |f) =

∑
i

([e
(i)
−β′ , z]⊗ e

(i)
β′ |e⊗ f)

It is straightforward to check that nondegeneracy of bilinear forms extends to the tensor
product for finite-dimensional spaces (like our root spaces are), and so we have for every
such z that ∑

i

e
(i)
−α′ ⊗ [z, e

(i)
α′ ] =

∑
i

[e
(i)
−β′ , z]⊗ e

(i)
β′

In our case, viewing g(A) ⊗C g(A) ⊂ U(g(A)), and setting z = x, α′ = β, β′ = −β, we
have ∑

i

e
(i)
−α′ [z, e

(i)
α′ ] = −

∑
i

[z, e
(i)
−β′ ]e

(i)
β′

as desired.
Now, let’s calculate Ω0x(v) in a different way. The formula we want to obtain is

Ω0x(v) = (2(ρ|α)− (α|α))x(v)

We have previously discussed in class that Ω = 2ν−1(ρ) +
∑

i u
iui + Ω0 (the u are dual

bases of h with the standard form) commutes with the action of g(A) and acts on M(0)
by (0 + 2ρ|0)Id = 0. Therefore,

Ω0x(v) = −2ν−1(ρ)x(v)−
∑
i

uiuix(v) =

= −2〈ν−1(ρ),−α〉x(v)−
∑
i

〈ui,−α〉〈ui,−α〉x(v) = −2〈ν−1(ρ),−α〉x(v) =

= 2(ρ|α)x(v)−
∑
i

(ui|ν−1(−α))(ui|ν−1(−α))x(v) = 2(ρ|α)x(v)−(ν−1(−α)|ν−1(−α))x(v) =

= (2(ρ|α)− (α|α))x(v)

Combining the two boxed formulas, we have∑
β∈S

∑
i

[e
(i)
−β, [e

(i)
β , x]](v) = (2(ρ|α)− (α|α))x(v)

Note that the coefficients on both sides are in U(n−) because x is. Therefore, since the
Verma module M(0) was defined as a free U(n−)-module, we have∑

β∈S

∑
i

[e
(i)
−β, [e

(i)
β , x]] = (2(ρ|α)− (α|α))x

We are now ready for the main theorem.
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Theorem 2.4

For any symmetrizable Kac-Moody algebra g(A),

1. When restricted to any root space gα (but not h), (·|·)0 is positive-definite. In
particular, (·|·)0 is positive-definite on n− ⊕ n+.

2. Highest-weight module L(Λ) is unitarizable iff Λ ∈ P+. In particular, integrable
highest-weight modules are unitarizable.

Proof. 1. We will show that (·|·)0 is positive-definite on g−α for α ∈ ∆+. This is sufficient
because for the positive root spaces we can use that

(ω0(x)|ω0(x))0 = −(x|ω0(x)) = −(ω0(x)|x) = (x|x)0

Proceed by induction on the height of α. In the case ht(α) = 1, α = αi and so g−α = Cfi.
Therefore, the base case follows by definition of (·|·)0:

(fi|fi)0 = −(−ei|fi) = εi > 0

Now, suppose ht(α) = k. Again set S = {β ∈ ∆+ : β < α}. Each β ∈ S has rank
less than k and so by induction (·|·)0 is positive-define on g−β, so we can choose an

orthonormal basis {e(i)
−β}i for it. Defining e

(i)
β := −ω0(e

(i)
−β),

(e
(i)
β |e

(j)
−β) = (−ω0(e

(i)
−β)|e(j)

−β) = (e
(i)
−β|e

(j)
−β)0 = δi,j

so these choices do provide a dual basis under (·|·). By the previous lemma (2.3), for any
x ∈ g−α,

((2(ρ|α)− (α|α))x|x)0 = (Ω1(x)|x)0 =
∑

α′∈∆+

∑
i

([e
′(i)
−α′ [e

′(i)
α′ , x]−]|x)0 =

=
∑
β∈S

∑
i

([e
(i)
−β, [e

(i)
β , x]]|x)0 =

∑
β∈S

∑
i

−([e
(i)
β , x]|[ω0(e

(i)
−β), x])0 =

=
∑
β∈S

∑
i

([e
(i)
β , x]|[e(i)

β , x])0 ≥ 0

by induction since [e
(i)
β , x] ∈ gβ−α. With the fact (which we will shortly prove) that for

any α ∈ ∆+ \Π,

2(ρ|α)− (α|α) ≥ 0

we can divide to obtain
(x|x)0 ≥ 0 ∀x ∈ g−α

By non-degeneracy, (x|x)0 = 0 only if x = 0, so (·|·)0 is non-degenerate as desired.
Now it remains to show the boxed inequality for α above. For α ∈ ∆+ and not a

simple root, recall that α is called real if it is in the Weyl group orbit of a simple root
and otherwise it is called imaginary. First suppose α = w(αi) is real. Then α∨ = w(α∨i )
is a real coroot of ‘height’ greater than 1. We know that

(α|α) = (w(αi)|w(αi)) = (αi|αi) > 0

and so
2(ρ|α)

(α|α)
= 〈ρ, α∨〉 =

∑
i

ki
1

2
· 2 = ht(α∨) > 1

9
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Thus, the boxed inequality is true for real α.
Now, suppose α is imaginary. Since (ρ|α) =

∑
i
ki
2 (αi|αi) > 0 for all positive α, it

suffices to show that for positive imaginary α we have that (α|α) ≤ 0. Choose β ∈W · α
in ∆+ of minimal height. This β must have 〈β, α∨i 〉 ≤ 0 for all i because it lies in
−C∨ where C∨ is the co-fundamental chamber of the Weyl group action (by similar
considerations as our construction of the fundamental chamber). Then,

(α|α) = (β|β) =
∑
i

ki(β|αi) ≤ 0

completing the proof.
2. Similarly to the last part, we will show that H is positive-definite on each weight

space L(Λ)λ by induction on ht(Λ− λ). In the base case we have λ = Λ in which case
L(Λ)Λ = CvΛ with H(vΛ, vΛ) = 1.

Suppose Λ− λ has height k > 0 and let v ∈ L(Λ)λ. As in the first part, we can choose

orthonormal basis (with respect to (·|·)0) {e(i)
α }i for gα with α ∈ ∆+ which will have dual

basis {−ω0(e
(i)
α )} for g−α with respect to (·|·). Recall that we have previously constructed

operator

Ω := 2ν−1(ρ) +
∑
i

uiui + Ω0

, where {ui}i, {ui}i are dual bases of h, which acts on any restricted g(A)-module and
commutes with the action of g(A). Using our chosen dual bases, we can write Ω as

Ω = 2ν−1(ρ) +
∑
i

uiui − 2
∑
α∈∆+

∑
i

ω0(e(i)
α )e(i)

α

This acts on v ∈ L(Λ)λ as

Ω(v) = 2〈λ, ν−1(ρ)〉v +
∑
i

〈λ, ui〉〈λ, ui〉v − 2
∑
α∈∆+

∑
i

ω0(e(i)
α )e(i)

α (v) =

= (2λ|ρ)v +
∑
i

(ν−1(λ)|ui)(ν−1(λ), ui)v − 2
∑
α∈∆+

∑
i

ω0(e(i)
α )e(i)

α (v) =

= (λ|2ρ+ λ)v − 2
∑
α∈∆+

∑
i

ω0(e(i)
α )e(i)

α (v)

by the dual basis identity obtained in the proof of our last lemma (2.3). From this
expression, we can compute H(Ω(v), v) in two different ways. First, we showed in class
that Ω acts on L(Λ) as

Ω = (Λ + 2ρ|Λ)Id =⇒ H(Ω(v), v) = (Λ + 2ρ|Λ)H(v, v)

Secondly, the previous calculation gives directly that

H(Ω(v), v) = (λ|2ρ+ λ)H(v, v)− 2
∑
α∈∆+

∑
i

H(ω0(e(i)
α )e(i)

α (v), v) =

= (λ|2ρ+ λ)H(v, v) + 2
∑
α∈∆+

∑
i

H(e(i)
α (v), e(i)

α (v))

Combining these two gives

2
∑
α∈∆+

∑
i

H(e(i)
α (v), e(i)

α (v)) = ((Λ + 2ρ|Λ)− (λ|2ρ+ λ))H(v, v) =

10
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= ((Λ|Λ)− (λ|λ) + 2(Λ− λ|ρ))H(v, v) =
(
|Λ + ρ|2 − |λ+ ρ|2

)
H(v, v)

We showed that the coefficient |Λ + ρ|2 − |λ + ρ|2 is strictly positive for λ < Λ in our
second lemma (2.2) (we are using here that Λ ∈ P+). Because we are taking α ∈ ∆+, we

know e
(i)
α v lies in some L(Λ)λ′ with ht(Λ− λ′) < k, and so by induction the leftmost side

of the equality is greater than or equal to 0. Dividing, we get H(v, v) ≥ 0 and so (by
nondegeneracy on weight spaces) H is positive-definite for Λ ∈ P+.

Conversely, suppose that we know H is positive-definite on an arbitrary L(Λ). Recall
that {ei, fi, α∨i } form an sl2-subalgebra with the usual relations

[ei, f
k
i ] = −k(k − 1)fk−1

i + kfk−1α∨i

=⇒ eif
k
i vΛ = k(Λ(α∨i )− k + 1)fk−1

i vΛ

=⇒ 0 ≤ H(fki vΛ, f
k
i vΛ) = H(fk−1

i vΛ,−(−ei)fki vΛ) =

= k(〈Λ, α∨i 〉 − k + 1)H(fk−1
i vΛ, f

k−1
i vΛ) = · · · = k!

k∏
j=1

(〈Λ, α∨i 〉 − j + 1)H(vΛ, vΛ)

Since 1 − j ≤ 0 for all j ≥ 1 and H(vΛ, vΛ) = 1, that means 〈Λ, α∨i 〉 ≥ 0 and so
Λ ∈ P+.

§2.1 Untwisted Affine Case

With this classification completed, it is helpful to look at what this means for the case
g(A) is an untwisted affine Kac-Moody algebra where we have very concrete formulas.
As previously, let g̊ be a finite-dimensional simple Lie algebra, with

ĝ = g̊[t, t−1]⊕ CK

g = ĝ⊕ Cd

[x⊗ tk, y ⊗ tl] = [x, y]⊗ tk+l + kδk,−l(x|y)K, [d, x⊗ tk] = kx⊗ tk, [K, g] = 0

We have also discussed previously some of the corresponding structure of these algebras.
The Cartan subalgebra is given by

h = h̊ + CK + Cd

and we can extend a normalized invariant form on g̊ to g via

(tm ⊗ x|tn ⊗ y) = δm,−n(x|y), (K|K) = (d|d) = 0

(K|d) = 1 (K|g[t, t−1]) = (d|g[t, t−1]) = 0

To write our involutions in concrete terms, it will also be necessary to have a description
of the simple roots and Chevalley generators of these algebras. Letting {Ei, Fi}i be the
Chevalley generators of g̊, it is shown in Chapter 7 of [10] that we can complete them
to the Chevalley generators for g by setting ei = 1⊗ Ei, fi = 1⊗ Fi and adding in the
additional e0, f0 defined by

e0 = t⊗ E0 f0 = t−1 ⊗ F0

E0, F0 ∈ g̊ with (F0 |̊ω(F0)) =
−2

(θ|θ)
E0 = −ω̊(F0)

11
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where is the highest root of g̊ (the positive root whose sum with any simple root is not a
root of g̊). Using these generators, we can find an explicit description of our involutions:

ω(ei) = −fi =⇒ ω(t⊗ E0) = −t−1 ⊗ F0

ω(h) = −h =⇒ ω(K) = −K ω(d) = −d

Thus, the full form of the involution is

ω(tm ⊗ x+ λK + µd) = t−m ⊗ ω̊(x)− λK − µd

Similarly, for the compact involution we obtain can expand from these same values
antilinearly to obtain for any P ∈ C[t, t−1]

ω0(P (t)⊗ x+ λK + µd) = P (t−1)⊗ ω̊0(x)− λK − µd

where P is obtained from P by taking the complex conjugate of each coefficient of P .
We can now expand the Hermitian form as

(tm⊗x+λ1K+µ1d|tn⊗y+λ2K+µ2d)0 = −(t−m⊗ω̊0(x)−λ1K−µ1d|tn⊗y+λ2K+µ2d) =

= −δm,n(ω̊0(x)|y)− λ1µ2 − µ1λ2 = δm,n(x|y)0 − λ1µ2 − µ1λ2

In particular, we can show directly that (·|·)0 is positive-define away from the Cartan as
we did in Theorem 2.4:

(P (t)⊗ x|P (t)⊗ x)0 = (x|x)0 ·
∑
j

|cj |2

where the cj are the coefficients of P . This does assume positive-definiteness of (·|·)0

for finite-dimensional simple Lie algebras, which can be shown directly by extending
the negative of the Killing form on the compact real form of g̊ (which is necessarily
positive-definite by compactness) antilinearly.

Notice (·|·)0 is still not positive-definite or positive-semidefinite on h. However, if we
restrict to h′ the cross-terms disappear and so (·|·)0 actually is positive-semidefinite on
h′. In fact, it can be shown that (·|·)0 is positive-definite on h′ iff A is finite type, and
positive semidefinite on h′ iff A is affine type [10].

§3 A Generalization for Affine Kac-Moody Algebras

In addition to the classification of irreducible highest-weight modules which are unitariz-
able with respect to our usual structures, there is also a classification for a more general
choice of Borel subalgebra and involution given in [8] and [8]. A general subset ∆′+ of ∆
will be called a set of positive roots if it is closed under addition and contains exactly
one of α and −α for every α ∈ ∆ (besides 0, which it does not contain). Then, the Borel
algebra associated to ∆′+ is

b := h⊕
⊕
α∈∆′+

gα

A general antilinear anti-involution ω is called consistent if it respects the grading on
g(A): ω(gα) = g−α. In particular, ω can be rescaled on simple root spaces such that
ω(ei) = ±fi.

The Verma module construction can be generalized by using instead of a weight a
general one-dimensional representation λ : b→ C, defining

M(λ) = U(g)/U(g)bλ

12
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where bλ = {x ∈ b : λ(x) = 0}. This is highest-weight in the sense that it is has a
generating vector on which b acts by λ. Then, this M(λ) has unique contravariant
Hermitian form given by

H(u, v) = λ(π(ω(v)u))

where π is the projection onto U(b). This is essentially the same as the expectation
construction given before and contravariance and uniqueness follow from the same
argument. Note that in order for this to be Hermitian we need

λ(π(g)) = λ(π(ω(g)))

which we will call the reality condition and henceforth assume. In order to try to
construct representations where this form is unitarizable, we work backwards by defining
L(λ) = Lb,ω(λ) := M(λ)/I(λ) where I(λ) is the kernel of H. On this quotient H passes
to a non-degenerate contravariant form, but as before it is not necessarily positive-definite.
There are essentially three categories of ω, b, λ for which these L(λ) are unitarizable:

The first class is those defined with the compact involution, standard Borel subalgebra,
and λ(ei) = 0, λ(α∨i ) ∈ Z+. These are exactly the representations we have already
classified as being unitarizable in the last section. These will be referred to as the
integrable ones.

The next class is the elementary representations. Let b̊ be a Borel subalgebra of g̊, ω̊ a
consistent antilinear anti-involution of g̊, and {λi}i=1,...,N a finite set of b̊-representations
such that L̊b,̊ω(λi) is a unitarizable representation of g̊. Note that the classification of
these modules for finite-dimensional simple algebras is certainly nontrivial and given in
[7]. Define

ω(tk ⊗ x) = t−k ⊗ ω̊(x)

b = C[t, t−1]⊗ b̊

λ(tk ⊗ b) =
∑
i

zki λi(b)

where zi ∈ S1 ⊂ C are some chosen constants, and the central extension elements are
negated by the involution and act by 0 under λ. The involution was chosen exactly as
we calculated it to be for the standard setup in the last section, so its properties follow
from those of ω̊ immediately. Since the representation acts by merely collapsing the loop
components to norm-1 constants (unitary one-dimensional operators), it is true directly
that

Lω,b(λ) = L̊b,̊ω(λ1)⊗ · · · ⊗ L̊b,̊ω(λN )

is unitarizable.
The final class of unitarizable representations is the exceptional ones. They exist

only in the case g̊ = sll+1 and are constructed via

ω((ai,j(t))i,j) = (εi,jaj,i(t))i,j

b = {(ai,j(t))i,j : ai,j(t) = 0 if i > j}+ h

λµ((ai,j(t))i,j) = −
∫
S1

a1,1(eiθ) dµ(θ)

where µ is a finite positive measure on S1, (ai,j(z))i,j denotes the matrix with entries
ai,j(z) ∈ C[t, t−1] viewed as elements of the loop algebra (and again having the central
elements act by 0), and εi,j = −1 if both i and j are not 1 and otherwise εi,j = 1. These
irreducible representations are unitarizable and parameterized by choice of the measure
µ. Positive-definiteness, and thus unitarizability, in this case are shown in [8].

The following complete classification was given in [9]:

13
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Theorem 3.1

If g is an affine Lie algebra, ω a consistent antilinear anti-involution, b a Borel
subalgebra, and λ : b → C a one-dimensional representation satisfying the reality
condition, then Lb,ω(λ) is unitarizable iff it is either an integrable representation, an
elementary representation, an exceptional representation, or the highest component
(irreducible component with highest highest-weight) of the tensor product of an
elementary and exceptional representations.

§4 Unitarizability for the Virasoro Algebra

Another infinite-dimensional Lie algebra we have discussed for which there are nice
unitarizability results is the Virasoro algebra. Recall that the Virasoro algebra was
defined on the basis {Ln}n∈Z ∪ {c} with commutation relation

[Ln, Lm] = (n−m)Ln+m +
1

12
(n3 − n)δn,−mc

where Cc is a one-dimensional central subspace. This algebra naturally arises from the
study of Kac-Moody algebras as the nontrivial central extension by c of the algebra of
derivations on the loop algebra (Ln = −tn+1 ∂

∂t). To simplify things, I will abuse notation
and use c for both the central element in the algebra and specific scalars by which it acts
on modules.

In this case, the triangular decomposition is defined as

Vir = Vir− ⊕Vir0 ⊕Vir+ =
⊕
i<0

CLi ⊕ (Cc⊕ L0)⊕
⊕
j>0

CLi

A functional on Vir0 just corresponds to two elements of C, meaning a highest weight
module of weight (c, h) is defined as a representation V of the Virasoro algebra such that
there exists nonzero vc,h ∈ V with

Livc,h = 0 for i > 0, U(Vir−)vc,h = V, L0vc,h = hvc,h, cvc,h = cvc,h

Similarly to the constructions we did in our discussion of vertex algebras, there is a
unique Verma module M(c, h) corresponding to weight (c, h) which can be constructed
via induced representations. By Poincaré-Birkhoff-Witt, M(c, h) has a basis given by
{L−jn . . . L−j1vc,h : 0 < j1 ≤ j2 ≤ · · · ≤ jn}. For n = 1 we have that

L0L−jvc,h = L−jL0vc,h + [L0, L−j ]vc,h = (h+ j)L−jvc,h

and so inductively we can see that L0 acts by the multiplication by h+
∑

i ji:

L0L−jn . . . L−j1vc,h = L−jnL0L−jn−1 . . . L−j1vc,h + [L0, L−jn ]L−jn−1 . . . L−j1vc,h =

=

(
h+

n−1∑
i=1

ji

)
L−jn . . . L−j1vc,h + jnL−jn . . . L−j1vc,h =

(
h+

n∑
i=1

ji

)
L−jn . . . L−j1vc,h

This gives us decomposition of M(c, h) as

M(c, h) =
⊕
j≥0

M(c, h)h+j =
⊕
j≥0

{L−jn . . . L−j1vc,h :
∑
i

ji = j}

14
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As an aside, since the highest-weight space is one-dimensional, we get a dimension formula
for dimM(c, h)h+j = p(j) where p counts the number of integer partitions of j. Now,
we discussed in class that for V an h-diagonalizable module with h commutative, any
submodule respects the grading by h, and so with h = Vir0, we know M(c, h) has a
unique irreducible quotient L(c, h) (using the grading, proper submodules are exactly
the ones not containing the highest weight, so sums of proper submodules are proper
submodules). This L(c, h) also inherits the grading.

Which of these irreducible highest-weight representations are unitarizable? First, the
Chevalley and compact involutions on Vir are defined as the linear (respectively, anti-
linear) extensions of Ln 7→ −L−n, c 7→ −c, as in the Kac-Moody case, so unitarizability
will mean the module V possesses a positive-definite form H with H(vc,h, vc,h) = 1 and

H(Lnu, v) = H(u, L−n, v) , c, h ∈ R

for all u, v ∈ V (sufficient since c acts a scalar; the condition is redundant for h). Existence
and uniqueness of an ω-contravariant bilinear form B and an ω0-contravariant Hermitian
form H works the same as for symmetrizable Kac-Moody algebras: uniqueness follows
because the induced map on the restricted dual is a Vir-module isomorphism (which
must preserve the highest-weight space), and the forms can explicitly be constructed as

B(gvc,h, g
′vc,h) = 〈ω̂(g)g′vc,h〉

H(gvc,h, g
′vc,h) = 〈ω̂0(g)g′vc,h〉

where 〈v〉 denotes the vc,h-component of v and the hats denote the multiplication-reversing
extension to the universal enveloping algebra.

With this background, unitarizability over the Virasoro algebra is reduced just like the
Kac-Moody case to a question of positive-definiteness. Full results are more complicated
than the Kac-Moody case, but there are some immediate restrictions on c, h sketched in
[10]:

Theorem 4.1

For arbitrary c, h,

1. L(c, h) unitarizable =⇒ h ≥ 0, c ≥ 0

2. L(0, h) unitarizable =⇒ h = 0.

3. If V is any unitarizable L0-diagonalizable Virasoro module with finite-dimensional
L0-eigenspaces and the set of L0-eigenvalues σ(L0) is bounded below, then V
is an orthogonal direct sum of unitarizable L(c, h)’s and σ(L0) is nonnegative.

Proof. 1.
0 ≤ H(L−1vc,h, L−1vc,h) = H(vc,h, L1L−1vc,h) =

= H(vc,h, L−1L1vc,h) +H(vc,h, [L1, L−1]vc,h) = H(vc,h, 2L0vc,h) = 2h

and similarly

0 ≤ H(L−jvc,h, L−jvc,h) = H(vc,h, (2jL0 +
j3 − j

12
c)vc,h) = 2jh+

j3 − j
12

c

which has for sufficiently large j that 0 < 2jh << | j
3−j
12 c|, necessitating c ≥ 0.
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2. For any positive n, we can calculate that

H(L−2nvc,h, L−2nvc,h) = 4nh

H(L2
−nvc,h, L−2nvc,h) = 6n2h

H(L2
−nvc,h, L

2
−nvc,h) = 8n2h2

Therefore, when restricted to the subspace CL−2nvc,h⊕CL2
−nvc,h, H as a quadratic form

has determinant
0 ≤ 4nh · 8n2h2 − (6n2h)2 = 4n3h2(8h− 9n)

Since 8h− 9n < 0 for sufficiently large positive n, this means h = 0.
3. Under H, V is the direct sum of any submodule and its orthogonal complement

(which is also a submodule by the grading), so we can totally decompose V into irreducibles.
By the grading, eigenvalues of L0 being bounded below means that V is a highest-weight
module, and so it decomposes into L(c, h)’s. On each L(c, h), L0 acts on weight spaces
by h+ j for some nonnegative j, so using (1) the eigenvalues of L0 are nonnegative on
all of V .

Complete results have been known since 1986 due to [11] and [5]. I will state the
classification and give some ideas about how it is proved.

Theorem 4.2 (Unitarizable Highest-Weight Representations for the Virasoro)

L(c, h) is unitarizable exactly when c ≥ 1, h ≥ 0, or the (c, h) corresponds to a
discrete series representations:

c = 1− 6

m(m+ 1)
, h = hp,q(c) =

((m+ 1)p−mq)2 − 1

4m(m+ 1)

where m is an integer greater than 1 and p ∈ {1, 2, . . . ,m− 1}, q ∈ {1, 2, . . . , p}.

The key idea to restrict the values where the form could be positive-definite is contained
in the determinant calculation we just did for part (2) of the previous theorem. We know
that L(c, h) decomposes into orthogonal weight spaces L(c, h)h+j defined as the image
in the quotient of {L−jn . . . L−j1vc,h :

∑
i ji = j} ⊂ M(c, h), and so we can consider

positive-definiteness on each of these spaces by computing the determinant of H when
restricted to it. Taking Mj(c, h) to be the matrix of H on L(c, h)h+j , it is possible to
obtain the “Kac Determinant formula”

detMj(c, h) = Cj

j∏
k=1

 ∏
p,q∈Z+
pq=k

h− hp,q(c)


π(j−k)

where Cj is a positive constant depending on j and π is the integer partition function.
This was shown in the aforementioned Kac papers (using, among other things, character
formulas similar to ones we discussed in class), and then used through its number-theoretic
properties to show for values of c and h not given in the theorem there is some j such
that detMj(c, h) < 0.

These papers also gave realizations of L(c, h) and a unitary form for the allowed values
of c, h. In the case where c ≥ 1, h ≥ 0, it was constructed using the relation of the
Virasoro algebra to the Heisenberg algebra and corresponding Fock space representations
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we discussed in class. I will briefly discuss in the next section the unitarizability for the
Heisenberg algebra, but here is how it was used for the Virasoro. Let F = C[x1, x2, . . . ]
be the free commutative algebra of countably many variables (the Fock space) and have
the Virasoro algebra act on F by

L0 =
1

2
µ2Id +

∑
j>0

jxj
∂

∂xj
, Ln =

1

2

∑
i∈Z

a−ian+i

where for n0 = µId and for a > 0

a−n =
√
nxn, an =

√
n
∂

∂xn

and c acts by cId. This space can be equipped with a contravariant Hermitian form by

declaring elements of the form
x
k1
1√
k1!
. . . x

ks
s√
ks!

to be orthonormal. Moreover, when split into

irreducibles, the component generated by 1 in F is L(1, µ
2

2 ), obtaining unitarizability
for c = 1, h ≥ 0, and by taking tensor products for c ∈ Z≥1, h ≥ 0. Then, from this
result Kac argued one can show directly that L(c, h) is unitarizable for c ≥ 1, h ≥ 0 by a
continuity argument on the determinant formula.

To construct the discrete series unitary representations, the representation theory of
affine Lie algebras was used. Recall that for for affine algebra ĝ, we defined in class

Vk(g) = Indĝ
g̊[t−1,t]⊕C1Ck

with g̊[t−1, t] acting by 0 on Ck and 1 acting by k. On this vertex algebra we constructed
Sugawara operators

Sn :=
1

2

∑
l+m=n

: Jal Ja,m :

where Jal = Ja ⊗ tl, Ja,m = Ja ⊗ t−m, {Ja, Ja}a=1,...,dim g̊ dual bases of g̊ under the
normalized form (·|·). These operators satisfies the commutation relation [Sn, J

a
m] =

−m(k + h∨)Jam+n and so for k 6= h∨ there is an action of the Virasoro algebra by

Ln = 1
k+h∨Sn with central charge cg̊k = dim̊gk

k+h∨ .
For more general unitarizable representation of ĝ, the Sugawara operators act simi-

larly, giving a way to obtain unitarizable representations of the Virasoro algebra. The
method used in [5] to obtain all discrete series representations did this, in addition
to combining these representations with ones obtained from subgroups H of compact
groups G corresponding to g̊. Specifically all can be constructed just using the case
G = Sp(m− 1), H = Sp(m− 2)× Sp(1).

§4.1 The Heisenberg Algebra

To complete the discussion of unitarizability to the main set of infinite-dimensional Lie
algebras we have discussed in class, I will briefly recall everything needed for the easy
classification for the case of the Heisenberg algebra. Recall that this algebra has basis
{bi}i∈Z ∪ {1} where 1 is central and [bn, bm] = nδn,−m1. We showed in class that its
irreducible highest-weight modules can be realized concretely as acting on the Fock space
C[b−1, b−2, . . . ] via bn acting by multiplication for n < 0, bn 7→ λn ∂

∂b−n
for n > 0, b0 7→ 0,

and 1 7→ κId for λ, κ ∈ C. Repeating the construction of the contravariant form we’ve
been using,

H(b−j1 · b−jm , b−k1 . . . b−kn) = 〈(λjm
∂

∂b−jm
) . . . (λj1

∂

∂b−j1
)b−k1 . . . b−kn〉
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where 〈·〉 denotes the constant term (since that is the highest-weight space). In particular,
distinct monomials are orthogonal under H. Therefore, it is immediate that H is
positive-definite and the representation unitarizable exactly when λ ∈ R>0, κ ∈ R.

§5 Conclusion

Over the course of this project, I discussed a complete classification for unitarizable highest-
weight irreducible modules over symmetrizable Kac-Moody algebras, as well as over the
Virasoro and Heisenberg algebra. With respect to the usual Borel subalgebra, compact
involution, and highest-weight modules, the irreducible modules over symmetrizable g(A)
which are unitarizable are exactly L(Λ) where Λ is dominant integral, i.e. the integrable
representations. If we restrict ourselves to when A is of affine type but allow for more
general involutions and Borel subalgebras, the main new types of unitarizable highest-
weight are parameterized by positive finite measures on the circle. Finally, the Virasoro
algebra has irreducible highest-weight modules parameterized by complex numbers c, h
which are unitarizable for real c ≥ 1, h ≥ 0 and the c, h appearing in the discrete series
representations.

From a pure mathematical perspective, the unitarizability structure is useful for further
understanding the structure of highest-weight modules, as is done in Chapter 11 of [10].
In [6] and [12] unitarizability of Kac-Moody algebra representations is used to obtain
unitary representations of infinite-dimensional Lie groups associated to these algebras by
passing to the Hilbert space completion of L(Λ).

Moreover, the question of unitarizability is relevant to physicists. As outlined in [4], the
Virasoro algebra and affine Kac-Moody algebras can be thought of as central extensions of
the Lie algebras associated to the group of diffeomorphisms of the circle, and loop groups,
respectively. These can in turn be thought of as coordinate and gauge transformations on
S1, playing a central role in 2-dimensional conformal quantum field theory. In physical
theories, these operators tend to act unitarily and the spectrum of the action of the
respective commuting subalgebras usually correspond to physical quantities which are
bounded below, which is why highest-weight unitarizable representations are of particular
importance.
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