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1 Verma Module Characters

Recall last week we introduced the Category O for a Lie algebra and the Verma module
simple quotients M(λ) → L(λ), λ ∈ h∗ a weight, were exactly the simple objects of O.
When these quotients were finite-dimensional (i.e. λ dominant integral) we had the Weyl
Character Formula

Theorem 1 (Weyl Character). For L(λ) finite-dimensional,

Ch(L(λ)) =

∑
w∈W (−1)`(w)ew·λ∑
w∈W (−1)`(w)ew·0

(Note w · ρ = w(λ+ ρ)− ρ)

for W the Weyl group, ρ the half-sum of positive roots, and formal character

Ch(M) =
∑
λ∈h∗

dim(Mλ)e
λ

We wanted to compute the composition factors of other Verma modules and we had
obtained that using translation functors we can reduce the computations to O0. Specifically
in the Grothendieck group K0(0)

[Lw] =
∑
y≤w

ax,w[My]

where Mw = M(w · (−2ρ)), Ly = L(y · (−2ρ)) (ρ is the half sum of positive roots) and these
ax, w are integers. The surprising fact is that these ax,w are some Px,w(1) for Px,w ∈ Z[q]
that come completely from combinatorics of the flag variety.

Example 1. Let’s recall what happens for sl2 = 〈e, f, h〉 with [e, f ] = h, [h, e] = 2e, [h, f ] =
−2f . The finite-dimensional irreducibles are all found in the representation on functions
(where e, f, h act concretely by e = x ∂

∂y
, f = y ∂

∂x
, h = x ∂

∂x
− y ∂

∂y
)

Fun(C2) =
⊕
n≥0

Ln � C(x, y), Ln = span{xn, xn−1y, · · · , xyn−1, yn}
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The computation for the character of Ln directly is just (the weight spaces are 1 dimensional
and go from n to −n stepping by two):

Ch(Ln) = en + en−2 + · · ·+ e−n+2 + e−n =
en

1− e−2
− e−n−2

1− e−2
=

= Ch(Mn)− Ch(M−n−2) = Ch(M(λn))− Ch(M(s · λn))

which is the Weyl character formula form.
Notice that these Ln = Γ(P1,O(n)), which will be relevant when thinking about the

connection between differential operators on P1 and sl2.

2 Combinatorial Picture

A Coxeter group is a group generated by reflections (order 2 elements) {s1, . . . , sn} with
relations of the form (sisj)

mi,j = 1. Weyl groups are a particular example. Remember that
you can get the Weyl group from G as NG(T )/T ) for T a maximal torus in a Borel subgroup.
For GLn or sln the Weyl group is just the symmetric group on n letters.

Let W be the Weyl group (or any Coxeter group) and S the set of generating reflections.
For Sn this is the set {(12), (23), . . . , (n − 1 n)} of simple transpositions. The length of
a Weyl group element is the fewest number of simple reflections in an expression for the
element and elements are ordered y ≤ w means w = ys1 · · · sk with each right multiplication
increasing the length. Explicitly the length in Sn can be counted as the quantity of pairs in
{1, . . . , n} that the permutation inverts the order of (i < j becomes j < i).

Definition 1. The Hecke algebra HW of W is the free Z[q±1/2]-module (we’ll see why we
need square roots) on {Tw}w∈W with identity T1 and multiplication via{

TsTw = Tsw for `(sw) > `(w)

TsTw = (q − 1)Tw + qTsw for `(sw) < `(w)
(1)

Notice that if we set q = 1 both relations collapse to

TsTw = Tsw

, so the Hecke algebra is a deformation of the integral group algebra Z[W ] of W .
However, in the groups algebra Ts squares to 1 (because s2 = 1), but in the Hecke algebra

T 2
s = (q − 1)Ts + qT1

We can still make Ts invertible because

Ts (aT1 + bTs) = aTs + b ((q − 1)Ts + qT1) = (a+ b(q − 1))Ts + bqT1

=⇒ by setting b = q−1, a = q−1 − 1 we have Ts
(
(1− q−1)T1 + q−1Ts

)
= T1.

Together with

((q−1 − 1)T1 + q−1Ts)Ts = q−1Ts − Ts + q−1(q − 1)Ts + q−1qT1 = T1
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we have that T−1s = (q−1 − 1)T1 + q−1Ts .

Since every element w of the Weyl group is generated by a (nonunique) minimal string
of generators in S, w = s1 · · · sn, we have

Tw = Ts1···sn = Ts1 · · ·Tsn =⇒ T−1w = T−1sn · · ·T
−1
s1

=⇒ all Tw are units

An inductive argument shows the formula for T−1s generalizes as

(Tw−1)−1 = (−1)`(w)q−`(w)
∑
y≤w

(−1)`(y)Ry,w(q)Ty, Ry,w ∈ Z[q] of degree `(w)− `(y)

Definition 2. The bar involution on HW is given by{
q̄ = q−1

Tw = (Tw−1)−1
(2)

Can we find a basis of HW indexed by W still and stable under the involution? For s a
simple reflection

A(q)T1 +B(q)Ts = A(q−1)T1 +B(q−1)((q−1 − 1)T1 + q−1Ts) =

=

(
A(q−1) +B(q−1)(q−1 − 1)

)
T1 + q−1B(q−1)Ts

So for self-duality we want

B(q) = B(q−1)q−1 and A(q)−A(q−1) = B(q−1)(q−1−1) = q1/2(q−1−1) = (−q1/2)−(−q−1/2)

=⇒ B(q) = q−1/2, A(q) = −q1/2

=⇒ Cs = −q−1/2T1 + q−1/2Ts

Notice that we needed square roots of q to make this calculation work. The nicest coefficients
for an invariant basis we can get will be of the following form:

Theorem 2 (due to Kazhdan-Lusztig). There is a unique basis {Cw}w∈W of HW fixed
under the involution subject to the normalization:

1. Cw = (−1)`(w)q`(w)/2
∑

y≤w(−1)`(y)q−`(y)Py,w(q)Ty for Py,w ∈ Z[q]

2. Pw,w = 1 and deg Py,w(q) ≤ `(w)−`(y)−1
2

Example 2. • For S2, C1 = T1 and

Cs = q−1/2(Ts − qT1) = −q1/2(T1 + (−1)q−1 · 1̄ · Ts)

=⇒ P1,s = 1
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• For S3, the group elements are 1, s1 = (12), s2 = (23), s1s2, s2s1, s1s2s1. The degree
bound says the biggest degree we could have is 3−0−1

2
= 1 if y trivial and otherwise

degree 0. But P1,w = 1 because

T1 = T1 =⇒ (−1)0q−0P1,w(q−1) = (−1)0q0P1,w(q)

=⇒ P1,w(q−1) = P1,w(q) =⇒ P1,w(q) = constant

So in fact all polynomials are 1 for S3.

• For S4, will get the first nontrivial polynomials which are each Py,w(q) = q + 1 when
nontrivial. One of the nontrivial ones is Pt,tsut for S4 = 〈s, t, u〉 which does have degree
bounded by 4−1−1

2
= 1.

• Theorem due to Polo [1999]: Any polynomial of degree d with integer nonnegative
coefficients is the Kazhdan-Lusztig polynomial of some pair y, w in in the symmetric
group of order 1 + d+ P (1). So K-L polynomials are arbitrarily bad.

Idea of Proof of Theorem. Induct on the length of w. If w = w′s, then try just multiplying
together the Cw′ , Cs and then do a series of corrections to get better expressions.

The Kazhdan-Lusztig Conjecture is that if we evaluate back at q = 1 (the same value
where the Hecke algebra became the group algebra) we get the coefficients in our multiplicity
formula.

Theorem 3 (Kazhdan-Lusztig “Conjecture”). In the principal block O0 and simple quotient
Verma module Mw � Lw where Mw = M(w · (−2ρ)), Lw = L(w · (−2ρ)) (all of the simple
modules in O0) for w ∈ W Weyl group,

[Lw] =
∑
y≤w

(−1)`(w)−`(y)Py,w(1)[My]

These Kazhdan-Lusztig polynomials originally came from what I’ll talk about in the next
section. The really surprising part was that they relate to Verma module multiplicities.

3 Geometry

Where do the Kazhdan-Lusztig polynomials come from originally? My aim is to show it
relates to some cohomological data about subsets of the flag variety:

Py,w(q) =

`(w)∑
i=0

dimIH2i
ByB(BwB)

They are supposed to tell you about the combinatorics of singularities in Schubert varieties
(their intersection cohomology). Recall that our original setup was we take our group G,
say G = GL2, and a Borel subgroup B, say the subgroup of upper triangular matrices, T a
maximal torus in G:

G =

(
∗ ∗
∗ ∗

)
, B =

(
∗ ∗
0 ∗

)
, T =

(
∗ 0
0 ∗

)
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The Weyl group is then NG(T )/T (in this case permutation matrices). The flag variety is
then G/B. For GL2 this P1. Finally we had the Bruhat decomposition

G =
⊔
w∈W

BwB

The Schubert cells Bw are the image in the flag variety of BwB and their closures are
the Schubert varieties Xw, each cell is isomorphic to A`(w). The Weyl group ordering tells
us geometrically about the inclusions, a stratification by affine opens:

Xw =
⋃
y≤w

By

(and By ⊆ Xw exactly when y ≤ w). For GL2 this is just the point and inclusion into P1.
The first correspondence between the combinatorics above and geometry is

Tw ∼ j!(CBw
)

where j! is the shriek extension (extension by 0) of the constant sheaf.
Recall that in previous talks we got q terms from the action of the Frobenius over nonzero

characteristic. This Frobenius map is a canonical endomorphism on varieties over nonzero
characteristic that on P1 is given on closed points by [x : y] 7→ [xp : yp].

What does this do on cohomology? For P1 the nonzero cohomology degrees are (in
standard cohomology) H0(P1) = C and H2(P1) = C. The Frobenius acts trivially on 0th
cohomology (since it’s canonically defined and acts trivially on a point). On top cohomology,

[x : 1] 7→ [xp : 1] =⇒ deg(Fr) = p =⇒ acts by p

Similarly using something like Kunneth we have that H∗(P1 × P1) is

H0 = C H1 = 0 H2 = C⊕ C acts by p H3 = 0 H4 = C⊗ C acts by p2

Therefore, roughly we expect Frobenius acts on ith cohomology by qi/2 (I’ll now use q instead
of p).

To make this actually work we need to instead use intersection cohomology because
our Schubert varieties will have singularities. Concretely, we want to take (RΓ(·)) sections
of a sheaf called the IC (intersection cohomology) sheaf instead of the constant sheaf. In
particular, in the category of B-constructible perverse sheaves on G/B, the ICw are the
simple objects. Perverse sheaves lived in a derived category so these aren’t sheaves per se
but complexes of sheaves.

Without giving an exact definition of what the IC sheaf is, I’ll draw a picture of what
it does. If we have some singularity that looks like two P1’s meeting at a point (like two
spheres glued together) then the stalks away from that singularity point should agree with
the constant sheaf, and therefore are C. But at the singularity we should have stalk C⊕C.
So the IC sheaf is roughly

ICspace = Cleft sphere ⊕ Cright sphere
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This is where the next ingredient in the combinatorics comes from:

Cw ∼ ICXw

This lines up with our understanding of S2 because the flag variety is P1 and the IC sheaf
will just be the constant sheaf (P1 has no singularities!), so the constant sheaf is the “sum”
of the extension by 0 of the constant sheaf on the point B1B = B (we’re working in G/B
so this becomes a point) and the constant sheaf on the other cell BsB:

ICs ∼ δe + δs ⇐⇒ Cs ∼ Te + Ts

Where does the bar involution come from? Recall that for sufficiently nice manifolds Poincare
duality gives an isomorphism between ith cohomology and n− ith cohomology for n the top
degree. This generalizes to intersection cohomology for IC sheafs and the map we get is the
bar involution

bar involution ∼ Verdier duality

The precise statement is that you can form the character of a perverse sheaf F on the flag
variety of roughly the form

Ch(F) =
∑

w∈W,k∈Z

(dimH−`(w)−k)qkδw

and under the bar involution for sufficiently nice F ,

Ch(DF) = ChF

so our character formula is self-dual.
For a general IC sheaf, Frobenius will act on degree 2i by qi, and so if we label the rank in

each degree as Ca2i , then when we take trace of the Frobenius operator we get a polynomial

Tr(Fr) = 1 + a1q + a2q
2 + · · · ∼ Kazhdan-Lusztig Polynomial

In particular the Py,w will come from the trace of the Frobenius on i∗ByBICBwB. This is how
the Kazhdan-Lusztig polynomial is telling us about the combinatorics of singularities in the
Schubert varieties.

Example 3. Recall that the first nontrivial K-L polynomial we get is in S4 = 〈s, t, u〉 for
K-L polynomial Pt,tsut(q) = q + 1. Geometrically this is because looking at

i∗BtBICtsut → get constant sheaf C away from the copy of P1
t

→ get C⊕ C[−2] with Fr acting by 1, q on these two components

(recall that these are perverse sheaves so [-2] is referring to a degree shift)

=⇒ Tr(Fr) = q + 1
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