Kazhdan-Lusztig Theory

Jon Hillery

Fall 2024

1 Verma Module Characters

<u>Recall</u> last week we introduced the Category \mathcal{O} for a Lie algebra and the Verma module simple quotients $M(\lambda) \to L(\lambda), \lambda \in \mathfrak{h}^*$ a weight, were exactly the simple objects of \mathcal{O} . When these quotients were finite-dimensional (i.e. λ dominant integral) we had the Weyl Character Formula

Theorem 1 (Weyl Character). For $L(\lambda)$ finite-dimensional,

$$Ch(L(\lambda)) = \frac{\sum_{w \in W} (-1)^{\ell(w)} e^{w \cdot \lambda}}{\sum_{w \in W} (-1)^{\ell(w)} e^{w \cdot 0}} \quad (Note \ w \cdot \rho = w(\lambda + \rho) - \rho)$$

for W the Weyl group, ρ the half-sum of positive roots, and formal character

$$Ch(M) = \sum_{\lambda \in \mathfrak{h}^*} dim(M_{\lambda}) e^{\lambda}$$

We wanted to compute the composition factors of other Verma modules and we had obtained that using translation functors we can reduce the computations to \mathcal{O}_0 . Specifically in the Grothendieck group $K_0(0)$

$$[L_w] = \sum_{y \le w} a_{x,w}[M_y]$$

where $M_w = M(w \cdot (-2\rho)), L_y = L(y \cdot (-2\rho))$ (ρ is the half sum of positive roots) and these a_x, w are integers. The surprising fact is that these $a_{x,w}$ are some $P_{x,w}(1)$ for $P_{x,w} \in \mathbb{Z}[q]$ that come completely from combinatorics of the flag variety.

Example 1. Let's recall what happens for $\mathfrak{sl}_2 = \langle e, f, h \rangle$ with [e, f] = h, [h, e] = 2e, [h, f] = -2f. The finite-dimensional irreducibles are all found in the representation on functions (where e, f, h act concretely by $e = x \frac{\partial}{\partial y}, f = y \frac{\partial}{\partial x}, h = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$)

$$\operatorname{Fun}(\mathbb{C}^2) = \bigoplus_{n \ge 0} L_n \boxtimes \mathbb{C}(x, y), \ L_n = \operatorname{span}\{x^n, x^{n-1}y, \cdots, xy^{n-1}, y^n\}$$

The computation for the character of L_n directly is just (the weight spaces are 1 dimensional and go from n to -n stepping by two):

$$Ch(L_n) = e^n + e^{n-2} + \dots + e^{-n+2} + e^{-n} = \frac{e^n}{1 - e^{-2}} - \frac{e^{-n-2}}{1 - e^{-2}} =$$
$$= Ch(M_n) - Ch(M_{-n-2}) = Ch(M(\lambda_n)) - Ch(M(s \cdot \lambda_n))$$

which is the Weyl character formula form.

Notice that these $L_n = \Gamma(\mathbb{P}^1, \mathcal{O}(n))$, which will be relevant when thinking about the connection between differential operators on \mathbb{P}^1 and \mathfrak{sl}_2 .

2 Combinatorial Picture

A Coxeter group is a group generated by reflections (order 2 elements) $\{s_1, \ldots, s_n\}$ with relations of the form $(s_i s_j)^{m_{i,j}} = 1$. Weyl groups are a particular example. Remember that you can get the Weyl group from G as $N_G(T)/T$) for T a maximal torus in a Borel subgroup. For GL_n or \mathfrak{sl}_n the Weyl group is just the symmetric group on n letters.

Let W be the Weyl group (or any Coxeter group) and S the set of generating reflections. For S_n this is the set $\{(12), (23), \ldots, (n-1 n)\}$ of simple transpositions. The length of a Weyl group element is the fewest number of simple reflections in an expression for the element and elements are ordered $y \leq w$ means $w = ys_1 \cdots s_k$ with each right multiplication increasing the length. Explicitly the length in S_n can be counted as the quantity of pairs in $\{1, \ldots, n\}$ that the permutation inverts the order of (i < j becomes j < i).

Definition 1. The Hecke algebra \mathcal{H}_W of W is the free $\mathbb{Z}[q^{\pm 1/2}]$ -module (we'll see why we need square roots) on $\{T_w\}_{w\in W}$ with identity T_1 and multiplication via

$$\begin{cases} T_s T_w = T_{sw} \text{ for } \ell(sw) > \ell(w) \\ T_s T_w = (q-1)T_w + qT_{sw} \text{ for } \ell(sw) < \ell(w) \end{cases}$$
(1)

Notice that if we set q = 1 both relations collapse to

$$T_s T_w = T_{su}$$

, so the Hecke algebra is a deformation of the integral group algebra $\mathbb{Z}[W]$ of W.

However, in the groups algebra T_s squares to 1 (because $s^2 = 1$), but in the Hecke algebra

$$T_s^2 = (q - 1)T_s + qT_1$$

We can still make T_s invertible because

$$T_s (aT_1 + bT_s) = aT_s + b ((q-1)T_s + qT_1) = (a + b(q-1))T_s + bqT_1$$

$$\implies$$
 by setting $b = q^{-1}, a = q^{-1} - 1$ we have $T_s\left((1 - q^{-1})T_1 + q^{-1}T_s\right) = T_1.$

Together with

$$((q^{-1}-1)T_1 + q^{-1}T_s)T_s = q^{-1}T_s - T_s + q^{-1}(q-1)T_s + q^{-1}qT_1 = T_1$$

we have that $T_s^{-1} = (q^{-1} - 1)T_1 + q^{-1}T_s$. Since every element w of the Weyl group is generated by a (nonunique) minimal string of generators in $S, w = s_1 \cdots s_n$, we have

$$T_w = T_{s_1 \cdots s_n} = T_{s_1} \cdots T_{s_n} \implies T_w^{-1} = T_{s_n}^{-1} \cdots T_{s_1}^{-1} \implies \text{all } T_w \text{ are units}$$

An inductive argument shows the formula for T_s^{-1} generalizes as

$$(T_{w^{-1}})^{-1} = (-1)^{\ell(w)} q^{-\ell(w)} \sum_{y \le w} (-1)^{\ell(y)} R_{y,w}(q) T_y, \ R_{y,w} \in \mathbb{Z}[q] \text{ of degree } \ell(w) - \ell(y)$$

Definition 2. The <u>bar involution</u> on \mathcal{H}_W is given by

$$\begin{cases} \bar{q} = q^{-1} \\ \overline{T_w} = (T_{w^{-1}})^{-1} \end{cases}$$
(2)

Can we find a basis of \mathcal{H}_W indexed by W still and stable under the involution? For s a simple reflection

$$\overline{A(q)T_1 + B(q)T_s} = A(q^{-1})T_1 + B(q^{-1})((q^{-1} - 1)T_1 + q^{-1}T_s) =$$
$$= \left(A(q^{-1}) + B(q^{-1})(q^{-1} - 1)\right)T_1 + q^{-1}B(q^{-1})T_s$$

So for self-duality we want

$$B(q) = B(q^{-1})q^{-1} \text{ and } A(q) - A(q^{-1}) = B(q^{-1})(q^{-1} - 1) = q^{1/2}(q^{-1} - 1) = (-q^{1/2}) - (-q^{-1/2})$$
$$\implies B(q) = q^{-1/2}, A(q) = -q^{1/2}$$
$$\implies \boxed{C_s = -q^{-1/2}T_1 + q^{-1/2}T_s}$$

Notice that we needed square roots of q to make this calculation work. The nicest coefficients for an invariant basis we can get will be of the following form:

Theorem 2 (due to Kazhdan-Lusztig). There is a unique basis $\{C_w\}_{w \in W}$ of \mathcal{H}_W fixed under the involution subject to the normalization:

1.
$$C_w = (-1)^{\ell(w)} q^{\ell(w)/2} \sum_{y \le w} (-1)^{\ell(y)} q^{-\ell(y)} \overline{P_{y,w}(q)} T_y \text{ for } P_{y,w} \in \mathbb{Z}[q]$$

2. $P_{w,w} = 1 \text{ and } \deg P_{y,w}(q) \le \frac{\ell(w) - \ell(y) - 1}{2}$

Example 2. • For S_2 , $C_1 = T_1$ and

$$C_s = q^{-1/2}(T_s - qT_1) = -q^{1/2}(T_1 + (-1)q^{-1} \cdot \bar{1} \cdot T_s)$$
$$\implies P_{1,s} = 1$$

• For S_3 , the group elements are $1, s_1 = (12), s_2 = (23), s_1s_2, s_2s_1, s_1s_2s_1$. The degree bound says the biggest degree we could have is $\frac{3-0-1}{2} = 1$ if y trivial and otherwise degree 0. But $P_{1,w} = 1$ because

$$\overline{T_1} = T_1 \implies (-1)^0 q^{-0} P_{1,w}(q^{-1}) = (-1)^0 q^0 P_{1,w}(q)$$
$$\implies P_{1,w}(q^{-1}) = P_{1,w}(q) \implies P_{1,w}(q) = \text{constant}$$

So in fact all polynomials are 1 for S_3 .

- For S_4 , will get the first nontrivial polynomials which are each $P_{y,w}(q) = q + 1$ when nontrivial. One of the nontrivial ones is $P_{t,tsut}$ for $S_4 = \langle s, t, u \rangle$ which does have degree bounded by $\frac{4-1-1}{2} = 1$.
- Theorem due to Polo [1999]: Any polynomial of degree d with integer nonnegative coefficients is the Kazhdan-Lusztig polynomial of some pair y, w in the symmetric group of order 1 + d + P(1). So K-L polynomials are arbitrarily bad.

Idea of Proof of Theorem. Induct on the length of w. If w = w's, then try just multiplying together the $C_{w'}, C_s$ and then do a series of corrections to get better expressions. \Box

The Kazhdan-Lusztig Conjecture is that if we evaluate back at q = 1 (the same value where the Hecke algebra became the group algebra) we get the coefficients in our multiplicity formula.

Theorem 3 (Kazhdan-Lusztig "Conjecture"). In the principal block \mathcal{O}_0 and simple quotient Verma module $M_w \twoheadrightarrow L_w$ where $M_w = M(w \cdot (-2\rho)), L_w = L(w \cdot (-2\rho))$ (all of the simple modules in \mathcal{O}_0) for $w \in W$ Weyl group,

$$[L_w] = \sum_{y \le w} (-1)^{\ell(w) - \ell(y)} P_{y,w}(1)[M_y]$$

These Kazhdan-Lusztig polynomials originally came from what I'll talk about in the next section. The really surprising part was that they relate to Verma module multiplicities.

3 Geometry

Where do the Kazhdan-Lusztig polynomials come from originally? My aim is to show it relates to some cohomological data about subsets of the flag variety:

$$P_{y,w}(q) = \sum_{i=0}^{\ell(w)} \dim IH_{ByB}^{2i}(\overline{BwB})$$

They are supposed to tell you about the combinatorics of singularities in Schubert varieties (their intersection cohomology). Recall that our original setup was we take our group G, say $G = GL_2$, and a Borel subgroup B, say the subgroup of upper triangular matrices, T a maximal torus in G:

$$G = \begin{pmatrix} * & * \\ * & * \end{pmatrix}, B = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}, T = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$$

The Weyl group is then $N_G(T)/T$ (in this case permutation matrices). The flag variety is then G/B. For GL_2 this \mathbb{P}^1 . Finally we had the Bruhat decomposition

$$G = \bigsqcup_{w \in W} BwB$$

The Schubert cells B_w are the image in the flag variety of BwB and their closures are the Schubert varieties X_w , each cell is isomorphic to $\mathbb{A}^{\ell(w)}$. The Weyl group ordering tells us geometrically about the inclusions, a stratification by affine opens:

$$X_w = \bigcup_{y \le w} B_y$$

(and $B_y \subseteq X_w$ exactly when $y \leq w$). For GL_2 this is just the point and inclusion into \mathbb{P}^1 . The first correspondence between the combinatorics above and geometry is

$$\boxed{T_w \sim j_!(\underline{\mathbb{C}}_{B_w})}$$

where j_{l} is the shriek extension (extension by 0) of the constant sheaf.

Recall that in previous talks we got q terms from the action of the Frobenius over nonzero characteristic. This Frobenius map is a canonical endomorphism on varieties over nonzero characteristic that on \mathbb{P}^1 is given on closed points by $[x:y] \mapsto [x^p:y^p]$.

What does this do on cohomology? For \mathbb{P}^1 the nonzero cohomology degrees are (in standard cohomology) $H^0(\mathbb{P}^1) = \mathbb{C}$ and $H^2(\mathbb{P}^1) = \mathbb{C}$. The Frobenius acts trivially on 0th cohomology (since it's canonically defined and acts trivially on a point). On top cohomology,

$$[x:1] \mapsto [x^p:1] \implies \deg(Fr) = p \implies acts by p$$

Similarly using something like Kunneth we have that $H^*(\mathbb{P}^1 \times \mathbb{P}^1)$ is

$$H^0 = \mathbb{C}$$
 $H^1 = 0$ $H^2 = \mathbb{C} \oplus \mathbb{C}$ acts by p $H^3 = 0$ $H^4 = \mathbb{C} \otimes \mathbb{C}$ acts by p^2

Therefore, roughly we expect Frobenius acts on *i*th cohomology by $q^{i/2}$ (I'll now use *q* instead of *p*).

To make this actually work we need to instead use intersection cohomology because our Schubert varieties will have singularities. Concretely, we want to take $(R\Gamma(\cdot))$ sections of a sheaf called the IC (intersection cohomology) sheaf instead of the constant sheaf. In particular, in the category of *B*-constructible perverse sheaves on G/B, the IC_w are the simple objects. Perverse sheaves lived in a derived category so these aren't sheaves per se but complexes of sheaves.

Without giving an exact definition of what the IC sheaf is, I'll draw a picture of what it does. If we have some singularity that looks like two \mathbb{P}^1 's meeting at a point (like two spheres glued together) then the stalks away from that singularity point should agree with the constant sheaf, and therefore are $\underline{\mathbb{C}}$. But at the singularity we should have stalk $\mathbb{C} \oplus \mathbb{C}$. So the IC sheaf is roughly

$$IC_{\text{space}} = \underline{\mathbb{C}}_{\text{left sphere}} \oplus \underline{\mathbb{C}}_{\text{right sphere}}$$

This is where the next ingredient in the combinatorics comes from:

$$C_w \sim IC_{X_w}$$

This lines up with our understanding of S^2 because the flag variety is \mathbb{P}^1 and the IC sheaf will just be the constant sheaf (\mathbb{P}^1 has no singularities!), so the constant sheaf is the "sum" of the extension by 0 of the constant sheaf on the point B1B = B (we're working in G/Bso this becomes a point) and the constant sheaf on the other cell BsB:

$$IC_s \sim \delta_e + \delta_s \iff C_s \sim T_e + T_s$$

Where does the bar involution come from? Recall that for sufficiently nice manifolds Poincare duality gives an isomorphism between *i*th cohomology and n - ith cohomology for *n* the top degree. This generalizes to intersection cohomology for IC sheafs and the map we get is the bar involution

```
bar involution ~ Verdier duality
```

The precise statement is that you can form the character of a perverse sheaf \mathcal{F} on the flag variety of roughly the form

$$\operatorname{Ch}(\mathcal{F}) = \sum_{w \in W, k \in \mathbb{Z}} (\dim H^{-\ell(w)-k}) q^k \delta_w$$

and under the bar involution for sufficiently nice \mathcal{F} ,

$$\operatorname{Ch}(\mathbb{D}\mathcal{F}) = \overline{\operatorname{Ch}\mathcal{F}}$$

so our character formula is self-dual.

For a general IC sheaf, Frobenius will act on degree 2i by q^i , and so if we label the rank in each degree as $\underline{\mathbb{C}}^{a_{2i}}$, then when we take trace of the Frobenius operator we get a polynomial

$$Tr(Fr) = 1 + a_1q + a_2q^2 + \cdots \sim \text{Kazhdan-Lusztig Polynomial}$$

In particular the $P_{y,w}$ will come from the trace of the Frobenius on $i^*_{ByB}IC_{\overline{BwB}}$. This is how the Kazhdan-Lusztig polynomial is telling us about the combinatorics of singularities in the Schubert varieties.

Example 3. Recall that the first nontrivial K-L polynomial we get is in $S_4 = \langle s, t, u \rangle$ for K-L polynomial $P_{t,tsut}(q) = q + 1$. Geometrically this is because looking at

 $i_{BtB}^* IC_{tsut} \to \text{get constant sheaf } \underline{\mathbb{C}}$ away from the copy of \mathbb{P}^1_t

 \rightarrow get $\underline{\mathbb{C}}\oplus\mathbb{C}[-2]$ with Fr acting by 1,q on these two components

(recall that these are perverse sheaves so [-2] is referring to a degree shift)

$$\implies Tr(Fr) = q+1$$