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Communication Costs

We want to make programs take less time and energy.
Past Goal: Write algorithms to minimize calculations and arithmetic.
Now: Arithmetic is fast! Moving around information is still slow.

Current Goal: Write algorithms to minimize movement of information.
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Numerical Linear Algebra

Important for just about any computing application!
Machine learning, graphics, database manipulation, scientific computing, search
Basic operations such as matrix multiplication and matrix decompositions
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Multiplying Matrices - Calculation

We want a program to multiply two N x N matrices.

If we want to find C = A x B, the following code does the calculation:

for i =1 ton
for j =1 ton
for k =1 ton
cli,jl = C[i,j]l + A[i,k] * B[k,j]

In this code, we do about 2N? arithmetic floating-point operations total. We do:

e N3 multiplications of numbers
e N3 additions of numbers

We say the program does O(N?) arithmetic operations.



Multiplying Matrices - Communication

With this algorithm, how much information do we need to communicate?

If there are M spots in fast memory, then to multiply N x N matrices
N3
We can write that the number of communications is (2 (N3/\/M).

we need to do at least — M communications.

More memory means less communication.

This same result has been proven in two very different ways.



Proof Tool: The Loomis-Whitney Inequality

Say V is a finite set of points in Z3
i.e. a set of integer triples (i, j, k).

Then if X ={(}, k) : (i, j, k) is in V} is the set with
the x-coordinate removed,

Y the set with the y-coordinate removed, and
Z the set with the z-coordinate removed,

and if |V|, |X|, |Y], and |Z| denote the number of
points in each set,

We have |V| < VIX|-|Y]-]Z].

X is the blue rectangle,
Y is the red rectangle,
Z is the green rectangle.




Proof Tool: The Red-Blue Pebble Game

We can model a computation using a
directed acyclic graph (DAG).

Each node is a calculation.
Each arrow is a dependency.

We use pebbles to say whether a piece
of data is in fast or slow memory.

Blue pebbles represent slow memory.
There are arbitrarily many.

Figure 1. DAG for Fast Fourier Transform (FFT) [7]

Red pebbles represent fast memory. There are only M.



Red-Blue Pebble Game Rules
Start: Blue pebbles on all inputs. Goal: blue pebbles on all outputs.

The moves you can make are:

1. (Load) Put a red pebble on a node which has a blue pebble.

2. (Store) Put a blue pebble on a node which has a red pebble.

3. (Compute) Put a red pebble on a node whose parents all have red pebbles.
4. (

Delete) Remove any pebble.

How many loads/stores do you have to do, if there are only M red pebbles?

This is the communication cost.






Steps of the Proof

1. Split the computation process into segments, each
with M communications.

2. Find how much computing you can do in a segment.

3. Find how many segments you need.
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Step 1: Split into Segments

Split up the computation process into S segments.
In a segment, we allow exactly M communications between fast and slow memory.
So that's M loads from memory (e.g. finding entries of the matrices A or B)

or M stores to memory (e.g. filling in the entries of the matrix C = A x B).

M loads/stores M loads/stores M loads/stores e o o M loads/stores




Step 2: Calculations Per Segment

In the current segment, let V be the set of triples (i, j, k) such that we compute the
following line of code during the segment:

Cli,j] = C[i,j] + A[i,k] * B[k,j]
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