
Avoiding Communication in
Matrix Multiplication

SURF Math Team
Anthony Chen, Mason Haberle, Jon Hillery, Rahul Jain

1

Communication Costs
We want to make programs take less time and energy.

Past Goal: Write algorithms to minimize calculations and arithmetic.

Now: Arithmetic is fast! Moving around information is still slow.

Current Goal: Write algorithms to minimize movement of information.

2

Numerical Linear Algebra
Important for just about any computing application!

Machine learning, graphics, database manipulation, scientific computing, search

Basic operations such as matrix multiplication and matrix decompositions

3

Multiplying Matrices - Calculation
We want a program to multiply two N x N matrices.

If we want to find C = A x B, the following code does the calculation:

In this code, we do about 2N³ arithmetic floating-point operations total. We do:

● N³ multiplications of numbers
● N³ additions of numbers

We say the program does O(N³) arithmetic operations. 4

Multiplying Matrices - Communication
With this algorithm, how much information do we need to communicate?

If there are M spots in fast memory, then to multiply N x N matrices

we need to do at least communications.

We can write that the number of communications is .

More memory means less communication.

This same result has been proven in two very different ways.

5

Proof Tool: The Loomis-Whitney Inequality
Say V is a finite set of points in
i.e. a set of integer triples (i, j, k).

Then if X = {(j, k) : (i, j, k) is in V} is the set with
the x-coordinate removed,
Y the set with the y-coordinate removed, and
Z the set with the z-coordinate removed,

and if |V|, |X|, |Y|, and |Z| denote the number of
points in each set,

We have . X is the blue rectangle,
Y is the red rectangle,
Z is the green rectangle. 6

Proof Tool: The Red-Blue Pebble Game
We can model a computation using a
directed acyclic graph (DAG).

Each node is a calculation.
Each arrow is a dependency.

We use pebbles to say whether a piece
of data is in fast or slow memory.

Blue pebbles represent slow memory.
There are arbitrarily many.

Red pebbles represent fast memory. There are only M.
7

Red-Blue Pebble Game Rules
Start: Blue pebbles on all inputs. Goal: blue pebbles on all outputs.

The moves you can make are:

1. (Load) Put a red pebble on a node which has a blue pebble.
2. (Store) Put a blue pebble on a node which has a red pebble.
3. (Compute) Put a red pebble on a node whose parents all have red pebbles.
4. (Delete) Remove any pebble.

How many loads/stores do you have to do, if there are only M red pebbles?

This is the communication cost.

8

9

Steps of the Proof
1. Split the computation process into segments, each

with M communications.
2. Find how much computing you can do in a segment.
3. Find how many segments you need.

10

Step 1: Split into Segments
Split up the computation process into S segments.

In a segment, we allow exactly M communications between fast and slow memory.

So that’s M loads from memory (e.g. finding entries of the matrices A or B)

or M stores to memory (e.g. filling in the entries of the matrix C = A x B).

M loads/stores M loads/stores M loads/stores M loads/stores

11

Step 2: Calculations Per Segment
In the current segment, let V be the set of triples (i, j, k) such that we compute the
following line of code during the segment:

12

