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Lecture 8: Applications of Information Theory

Scribe: Jon Hillery 5/20/2019

8.1 Basic Definitions

Definition 8.1. For a random variable X with distribution p : X → [0, 1], we define the entropy of the
distribution as

H(X) := −
∑
x∈X

p(x) log2 p(x) = −
∑
x∈X

p(x) log2

1

p(x)

The correct interpretation of this definition is as the “average number of bits” needed to store information
about our distribution, which should become more clear through examples. In fact, we see that

H(X) = E(log2

1

p(x)
)

and from this representation we can see that since 0 ≤ p(x) ≤ 1 for all x, H(X) ≥ 0 (which makes sense since
we should always need some bits). Another important thing to note is that the entropy of X is independent
of the values of the random variables; we only care about the distribution of probabilities.

Example 8.2. One familiar example (hopefully) is Huffman encoding. Suppose we have the distribution
is {A,B,C,D} with respective frequencies 10, 1, 2, 1, i.e. the probability distribution is p(A) = 5

8 , p(B) =
1
16 , p(C) = 3

16 , p(D) = 1
8 . The Huffman encoding tree is

(diagram created with Google Slides) and so we can see the average number of bits needed is 1· 58 +2· 316 +3· 116 +
3 · 18 ≈ 1.5625. The entropy of this distribution is H(X) = −( 58 log 5

8 + 1
16 log 1

16 + 3
16 log 3

16 + 1
8 log 1

8 ) ≈ 1.502.
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Note that the entropy is less than the Huffman bits. This is because even though the Huffman encoding is
optimal, it is by nature discrete whereas the entropy is simply an average. However, we do have that the
entropy will lower bound the average number of bits we need in our discrete representations.

Example 8.3. Let X = {a, b} with probabilities p and (1− p) respectively. Then

H(X) = p log(
1

p
) + (1− p) log(

1

1− p
)

. As we vary p, this looks like:

(graph taken from Desmos). This fits our intuition, since we would expect that the more “unbalanced” our
distribution is, the more certainty we have about the outcome, and thus the fewer number of bits we need to
express it on average.

Example 8.4. If we have a uniform distribution on n events (i.e. the probability of each is 1
n ), then

H(X) =

n∑
x=1

1

n
log n = n · 1

n
log n = log n

We will show that in fact the uniform distribution is the highest amount of entropy you can have from
n events. This should make sense since we have to “allocate information equally”, i.e. we start with no
information about which event is more likely to happen.

Definition 8.5. Given a joint distribution (X,Y ), the joint entropy is

H(X,Y ) :=
∑
x∈X

∑
y∈Y

p(x, y) log
1

p(x, y)
= E(log

1

p(x, y)
)

Example 8.6. If X and Y are independent, i.e. p(x, y) = p(x)p(y), then

H(X,Y ) = −E(log p(x, y)) = −E(log(p(x)p(y))) = −E(log p(x)+log p(y)) = −E(log p(x))−E(log p(y)) = H(X)+H(Y )

This makes sense since we would expect that if the distributions are independent then the distribution of one
shouldn’t affect the “disorder” or “average information” of the other.
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Definition 8.7. The conditional entropy of Y conditioned on X is defined as

H(Y |X) :=
∑
x∈X

p(x)H(Y |X = x) = −E log p(Y |X)

Example 8.8. Suppose we have flip two weighted coins with the first having p(H) = 1
3 , p(T ) = 2

3 and the
second coin is fair if the first result is H and p(H) = 1

4 , p(T ) = 3
4 if the result is T . The total entropy is then

H(Z) = −(
1

3
· 1

2
log(

1

3
· 1

2
) +

1

3
· 1

2
log(

1

3
· 1

2
) +

2

3
· 1

4
log(

2

3
· 1

4
) +

2

3
· 3

4
log(

2

3
· 3

4
))

Notice that this can be re-arranged as

−(
1

3
log

1

3
+

2

3
log

2

3
) + (

1

3
(−(

1

2
log

1

2
+

1

2
log

1

2
)) +

2

3
(−1

4
− 3

4
log

3

4
)) = H(X) +H(Y |X)

In fact, we can do this in general as we will see in the next section.

8.2 Important Properties

Theorem 8.9 (The Chain Rule). H(X,Y ) = H(X) +H(Y |X)

Proof.

H(X,Y ) = −E(log p(X,Y )) = −E(log(p(Y |X)p(X))) = −E(log p(Y |X) + log p(X))) =

= −E(log p(Y |X))− E(log p(X)) = H(Y |X) +H(X)

Theorem 8.10 (Jensen’s Inequality). If φ is a concave function, then for positive weights ai,

φ(

∑
aixi∑
ai

) ≥
∑
aiφ(xi)

ai

with equality iff the xi are equal.

We will need this later, but state it without proof, as it is a well-known tool in probability.

Theorem 8.11. H(Y ) ≥ H(Y |X).

This makes sense since conditioning “reduces the amount of disorder”, i.e. gives you more information.

Proof.

H(Y |X)−H(Y ) = −E(log p(Y |X)) + E(log p(Y )) = E(log
p(Y )

p(Y |X)
) = E(log

p(X)p(Y )

p(X,Y )
)
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By Jensen’s Inequality (since log is a concave function), we have that

E(log
p(X)p(Y )

p(X,Y )
) ≤ logE(

p(X)p(Y )

p(X,Y )
) = log(

∑
x,y

p(x, y)
p(x)p(y)

p(x, y)
) = log(

∑
x,y

p(x)p(y)) = log(1) = 0

and therefore
H(Y |X) ≤ H(Y )

Corollary 8.12. H(X,Y ) ≤ H(X) +H(Y ) (since H(X,Y ) = H(X) +H(Y |X) ≤ H(X) +H(Y )).

Theorem 8.13. H(X) ≤ log(|X |), where X is the set of events that occur with nonzero probability (the
support), with equality iff X is a uniform distribution.

Proof. H(X) =
∑

x∈X p(x) log( 1
p(x) ) ≤ log

∑
x∈X p(x) 1

p(x) by Jensen’s inequality. This quantity is just

log(|X |), completing the proof (equality follows from the equality condition of Jensen’s inequality).

8.3 Applications

8.3.1 Tripartite Triangles

Suppose we have a tripartite graph of partitions A,B,C and we want to have a bound on the number of
triangles T (cycles with one vertex in each partition set) in the graph given the number of edges n1 between
A and B, n2 between B and C, and n3 between A and C. Clearly T ≤ n1n2n3, but can we do better?

Pick the triangles uniformly. Since the distribution is uniform we have

log T = H(X,Y, Z)

and by the chain rule
log T = H(X,Y ) +H(Z|X,Y ) ≤ n1 +H(Z|X,Y )

and similarly
log T ≤ n2 +H(X|Y,Z)

Adding these, we get

2 log T ≤ n1 + n2 +H(Z|X,Y ) +H(X|Y,Z) ≤ n1 + n2 +H(Z) +H(Z|Z) = n1 + n2 + n3

and thus
T ≤

√
n1n2n3

8.3.2 Directed Vees and Triangles

Let G be a directed graph. Can we related the number of triangles to the number of vees (a vertex and two
directed edges leaving it, but they are allowed to be the same edge)? Our intuition says that the number of
vees should be at least the number of triangles, but this is hard to show.
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Again, take a uniformly random triangle, giving

log T = H(X,Y, Z) = H(X) +H(Y,Z|X) = H(X) +H(Y |X) +H(Z|X,Y ) ≤

≤ H(X) +H(Y |X) +H(Z|Y ) = H(X) + 2H(Y |X)

by symmetry.

Now, let’s create a distribution on the vee’s (a, b, c) based on the triangle distribution:

Pr(a, b, c) = Pr[X = a] · Pr[Y = b|X = a] · Pr[Y = c|X = a]

The entropy of this distribution is

H(A,B,C) = H(A) +H(B|A) +H(C|A) = H(X) + 2H(Y |X)

and since the uniform distribution has the highest entropy, we have that

log V ≥ H(X) + 2H(Y |X)

but this is the same bound we had for log T , giving

log V ≥ log T =⇒ V ≥ T
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